Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Sử dụng lí thuyết về lực kéo về trong dao động điều hòa, dùng đường tròn để tính thời gian trong dao động điều hòa
Cách giải:
Ở vị trí cân bằng lò xo dãn một đoạn ∆l = mg/k = 0,04m = 4cm
Kéo đến khi lò xo dãn 8cm rồi thả nhẹ, vậy biên độ dao động A = 4cm.
Vậy trong quá trình dao động của vật lò xo bị dãn => lực đàn hồi tác dụng lên giá treo luôn có hướng xuống dưới.
Thời điểm có lực đàn hồi tác dụng lên giá treo cùng chiều lực kéo về, vật ở trong khoảng từ VTCB đến biên trên, khoảng thời gian đó là T 2 = π m k = 0 , 2 s
Ta có: \(\omega=2\pi f=5\pi\) ; A = 4cm
\(\omega=\sqrt{\frac{K}{m}}=\sqrt{\frac{K}{0,1}}\Rightarrow K=25\)
\(\Delta l_o=\frac{mg}{k}=\frac{0,1.10}{25}=4cm\)
Áp dụng CT: \(F_{đh}max=K\left(\Delta l_o+A\right)\) và \(F_{đh}min=k\left(\Delta l_o-A\right)\)
Suy ra, Fmax = 2 N và Fmin = 0 N
Theo mình là đáp án khác.
Chọn đáp án A
Vì lò xo treo thẳng đứng và có thời gian bị nén nên A > Dl.
Thời gian lực kéo về ngược chiều với lực đàn hồi ứng với vật dao động từ vị trí cân bằng đến vị trí lò xo không biến dạng (tại A) và từ B về VTCB.
→t = 2/15 = (2.(90⁰-j))/ꞷ (1)
Thời gian lò xo bị nén ứng với vật dao động từ A đến B.
→t = 2/15 = 2j/ꞷ (2)
Từ (1) và (2) ® j = 300 ® w = 5p rad/s ® T = 0,4 s
w = g ∆ l = 5p → ∆ l = 0,04m = 4cm
cosj = ∆ l /A→A= ∆ l /cosj = 4/cos30⁰ = 8/ 3 cm
- Vì lò xo treo thẳng đứng và có thời gian bị nén nên A > Δl.
- Thời gian lực kéo về ngược chiều với lực đàn hồi ứng với vật dao động từ vị trí cân bằng đến vị trí lò xo không biến dạng (tại A) và từ B về VTCB.
Thời gian lò xo bị nén ứng với vật dao động từ A đến B:
- Từ (1) và (2):
Đáp án A
+ Vì lò xo treo thẳng đứng và có thời gian bị nén nên A > Dl.
+ Thời gian lực kéo về ngược chiều với lực đàn hồi ứng với vật dao động từ vị trí cân bằng đến vị trí lò xo không biến dạng (tại A) và từ B về VTCB.
+ Thời gian lò xo bị nén ứng với vật dao động từ A đến B.
Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)
Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)
Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là :
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)
Đáp án C
Gọi biên độ dao động là A.
Độ dãn của lò xo khi vật ở VTCB là: \(\Delta\ell_0=\dfrac{mg}{k}\)
Độ dãn cực đại của lò xo là: \(\Delta\ell_0+A=10cm=0,1m\)
Lực đàn hồi cực tiểu là: \(k(\Delta\ell_0-A)=0,8\)
\(\Rightarrow k(\Delta \ell_0+\Delta\ell_0-0,1)=0,8\)
\(\Rightarrow k(2\Delta \ell_0-0,1)=0,8\)
\(\Rightarrow k(2\dfrac{mg}{k}-0,1)=0,8\)
\(\Rightarrow2.mg-0,1.k=0,8\)
\(\Rightarrow2.0,24.10-0,1.k=0,8\)
\(\Rightarrow k=40(N/m)\)
Lực mà lò xo tác dụng lên vật khi lò xo dãn 5cm là lực đàn hồi của lò xo và bằng: \(F=k.\Delta\ell=40.0,05=2(N)\)
Đáp án A
Ta có ∆l = mg/k = 0,025 m = 2,5 cm.
→ quãng thời gian ngược chiều nhau là T/6 →
vật
đi từ vị trí π/2 đến 2π/3 và -2π/3 đến –π/2.
→ -A/2 = 2,5 cm.
→ A = 5 cm.
Đáp án D
Phương pháp: Sử dung̣ đường tròn lương̣ giác
Lực hồi phục có chiều luôn hướng về VTCB
Lực đàn hổi sinh ra khi lò xo bị biến dạng và có xu hướng đưa lò xo về trạng thái không biến dạng
Cách giải:
Tần số góc:
Độ dãn của lò xo ở VTCB: ∆ l = m g k = 4 cm
Kéo vật thẳng đứng xuống dưới để lò xo dãn 12cm rồi thả nhẹ cho vật dao động điều hoà => Biên độ dao động: A = 12 – 4 = 8cm
Biểu diễn trên đường tròn lượng giác khoảng thời gian hai lực cùng chiều (mô tả bởi phần trắng trên đường tròn)
Từ đường tròn lượng giác => t = 5T/6 = 1/3 (s)