K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Đáp án C

Phương pháp: Sử dụng công thức tính lực đàn hồi và trọng lượng

Cách giải:

+ Thời gian quả cầu đi từ vị trí cao nhất đến VT thấp nhất là 0,15s → T/2 = 0,15 s → T = 0,3 s.

→ Độ giãn của lò xo ở VTCB:  

+ Khi con lắc ở vị trí thấp nhất thì:   F d h   =   k . ( ∆ l 0   +   a )

Theo đề bài ta có: 

O
ongtho
Giáo viên
5 tháng 11 2015

Thời gian quả cầu đi từ vị trí cao nhất (x = -A) đến vị trí thấp nhất (x = A) chính là \(\frac{T}{2} = 0,2 => T = 0,4s.\)

Lực đàn hồi của lò xo khi lò xo ở vị trí thấp nhất chính là \(F_{dhmax} = k(A+\Delta l)\)

\(\frac{F_{max}}{P} = \frac{k(A+\Delta l)}{mg} = \frac{kA+k\Delta l }{mg } = 1+\frac{kA}{mg} =\frac{7}{4}\) (do \(k\Delta l = mg\))

=> \(A = \frac{3g}{4}\frac{m}{k} = \frac{3g}{4}.\frac{T^2}{4\pi^2} =0,03m = 3cm.\)

11 tháng 2 2016

<3

 

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

6 tháng 8 2016

T=1s nha


 

15 tháng 8 2016

\(\Delta l=5cm\)

Vị trí có lực đẩy đàn hồi lần thứ nhất chính là vị trí lò xo bắt đầu bị nén. Tức là qua vị trí -\(x=-\Delta l\).

M -10 10 N -5 ^

Vị trí ban đầu t = 0 tại M ứng với góc (-90 độ). 

Vị trí lực đầy đàn hồi lần thứ nhất tại N x = -5 cm.

=> \(\varphi=\pi+\frac{\pi}{6}=\frac{7\pi}{6}\Rightarrow t=\frac{\varphi}{\omega}=\frac{7\pi}{6.10\pi}=\frac{7}{60}s.\)

 

20 tháng 6 2019

sai rồi bạn ơi, lực đẩy max là lúc vật ở vị trí -A nhé, denta phi sẽ là 3π/2, và t sẽ là 3/20s

1 tháng 8 2016

Ta có: \(\omega=2\pi f=5\pi\) ; A = 4cm

\(\omega=\sqrt{\frac{K}{m}}=\sqrt{\frac{K}{0,1}}\Rightarrow K=25\)

\(\Delta l_o=\frac{mg}{k}=\frac{0,1.10}{25}=4cm\)

Áp dụng CT: \(F_{đh}max=K\left(\Delta l_o+A\right)\)    và  \(F_{đh}min=k\left(\Delta l_o-A\right)\)

Suy ra, Fmax = 2 N và Fmin = 0 N

Theo mình là đáp án khác.

12 tháng 6 2016

\(f=\frac{1}{2\pi}\sqrt{\frac{g}{\Delta l}}=\frac{1}{2\pi}\sqrt{\frac{\pi^2}{0.16}}=1.25Hz\)