K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:  (M + m)V = mv   

=> V = 0,02\(\sqrt{2}\) (m/s)

Tọa độ ban đầu của hệ hai vật  x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)

→ B

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:   \(\left(M+m\right)V=mv\)

\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)

Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)

Đáp án B

2 tháng 6 2016

Khi vật I qua VTCB thì nó có vận tốc là: \(v=\omega.A\)

Khi thả nhẹ vật II lên trên vật I thì động lượng được bảo toàn

\(\Rightarrow M.v = (M+m)v'\Rightarrow v'=\dfrac{3}{4}v\)

Mà \(v'=\omega'.A'\)

\(\dfrac{v'}{v}=\dfrac{\omega'}{\omega}.\dfrac{A'}{A}=\sqrt{\dfrac{M}{\dfrac{4}{3}M}}.\dfrac{A'}{A}=\dfrac{3}{4}\)

\(\Rightarrow \dfrac{A'}{A}=\dfrac{\sqrt 3}{2}\)

\(\Rightarrow A'=5\sqrt 3cm\)

Chọn A.

5 tháng 6 2016

Vận tốc của M khi qua VTCB: v = ωA = 10.5 = 50cm/s
Vận tốc của hai vật sau khi m dính vào M: v’ = Mv/(M+v)= 40cm/s
Cơ năng của hệ khi m dính vào M: W = 1/2KA'2= 1/2(m+M)v'2
A’ = 2căn5

10 tháng 9 2017

Đáp án B

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

27 tháng 10 2015

Cơ năng: \(W=0,064+0,096=0,16J\) \(\Rightarrow v_{max}=\sqrt{3,2}\)(m/s)

+ Thời điểm t1: \(v_1=\sqrt{1,92}\)(m/s)

+ Thời điểm t2: \(v_2=\sqrt{1,28}\)(m/s)

Biểu diễn sự biến thiên vận tốc bằng véc tơ quay ta có: 

√3,2 √1,28 √1,92 v O M N

Do \(v_1^2+v_2^2=v_{max}^2\) nên OM vuông góc ON.

Như vậy góc quay là \(90^0\)

Thời gian: \(t=\frac{1}{4}T=\frac{\pi}{48}\Rightarrow T=\frac{\pi}{12}\)

\(\Rightarrow\omega=24\)(rad/s)

Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{\sqrt{3,2}}{24}=0,07m=7cm\)

23 tháng 10 2015

tại t_2 ta có

W_đ/W_t = 1 --> x=A/\eqrt{2}

W_đ = W_t -->W= 2 W_đ =0.128

tại t=0 W_t = W-W_đ =0.032 -->W_đ /W_t =3 hay  x =+-A/2

w= 20 rad/s W=1/2w^2*m*A^2 --->A=8

t/12+T/8 =5T/24=\pi/48 -->T=0.1\pi

28 tháng 8 2018

19 tháng 8 2016

Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)

19 tháng 8 2016

v subscript m a x end subscript equals omega S subscript 0 equals square root of g over l end root l alpha subscript 0 equals 0 comma 313 space m divided by s

open parentheses v over v subscript m a x end subscript close parentheses squared plus open parentheses alpha over alpha subscript 0 close parentheses squared equals 1 rightwards double arrow v equals 0 comma 271 space m divided by s=2 7,1  cm/s