Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
mk nghĩ làm bài này như sau:
Ta có:\(\begin{cases}T1=2\pi\sqrt{\frac{l1}{g}}\\T2=2\pi\sqrt{\frac{l2}{g}}\end{cases}\)\(\Rightarrow\sqrt{\frac{l1.l2}{g^2}}=\frac{T1.T2}{\left(2\pi\right)^2}\)\(\Rightarrow\frac{1}{\sqrt{g}}.\sqrt{\frac{l1.l2}{g}}=\frac{T1.T2}{\left(2\pi\right)^2}\)
\(\Rightarrow\) \(T3=2\pi\sqrt{\frac{l1.l2}{g}}=\frac{\sqrt{g}}{2\pi}T1.T2\)
Chọn C
Cách thứ 2 mới đúng em nhé.
Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.
Mình giải thích thêm về công thức trên như sau.
Ta có suất điện đọng tính bởi :
\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)
Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)
\(e_{max}\) khi \(\omega_{max}\), với \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)
Thay vào trên ta tìm đc \(e_{max}\)
\(T=2\pi\sqrt{\frac{l}{g}}\)
\(T'=2\pi\sqrt{\frac{l'}{g}}\)
\(\Rightarrow\frac{T'}{T}=\sqrt{\frac{l'}{l}}=\sqrt{2}\Rightarrow T'=2\sqrt{2}s\)
Cái này hình như bạn viết nhầm đơn vị của g phải là m/s2
Khi lò xo có chiều dài l=28 thì vận tốc bằng 0=> vật ở vị trí biên âm
△l=|△l0-A|=2cm
Fd=k|△l|=2N
=>k=100N/m
△l0=\(\dfrac{m.g}{k}\)=0,02(m)=2cm
=>A=4cm
W=1/2.k.A2=0,08j
\(T_1=\frac{\Delta t}{40}.\)
\(T_2=\frac{\Delta t}{39}.\)
=> \(\frac{T_1}{T_2}=\frac{40}{39}=\sqrt{\frac{l_1}{l_2}}\).
Khi cho quả cầu tích điện và đặt điện trường vào thì gia tốc biểu kiến của con lắc lúc này là \(\overrightarrow{g_{bk}}=\overrightarrow{g}+\frac{\overrightarrow{F_đ}}{m}=\overrightarrow{g}+\frac{\overrightarrow{E}q}{m}\)
Do để chu kì không đổi khi tăng chiều dài thì g cũng phải tăng như vậy \(g_{bk}=g+\frac{E}{m}=g+\frac{Eq}{m}\)
Để \(T_1=T_2\)
=>\(2\pi\sqrt{\frac{l_2}{g_{bk}}}=2\pi\sqrt{\frac{l_1}{g}}\)
=> \(\frac{l_2}{l_1}=\frac{g+\frac{Eq}{m}}{g}=\frac{40^2}{39^2}.\)
=> \(E=2,08.10^4V.\)
1/ Chu kì con lắc đơn:
\(T=2\pi\sqrt{\dfrac{\ell}{g}}\)
Chiều dài tăng 25% thì:
\(T'=2\pi\sqrt{\dfrac{\ell+0,25\ell}{g}}=1,12.2\pi\sqrt{\dfrac{\ell}{g}}=1,12T\)
Suy ra chu kì tăng 12%
Đáp án B