K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)

19 tháng 8 2016

v subscript m a x end subscript equals omega S subscript 0 equals square root of g over l end root l alpha subscript 0 equals 0 comma 313 space m divided by s

open parentheses v over v subscript m a x end subscript close parentheses squared plus open parentheses alpha over alpha subscript 0 close parentheses squared equals 1 rightwards double arrow v equals 0 comma 271 space m divided by s=2 7,1  cm/s

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

16 tháng 2 2015

Biên độ dài: \(A=\alpha_0l=0,1.l\)

Tần số góc: \(\omega=\sqrt{\frac{g}{l}}\)

Áp dụng công thức độc lập: \(A^2=x^2+\frac{v^2}{\omega^2}\)\(\Rightarrow\left(0,1.l\right)^2=\left(0,04\sqrt{3}\right)^2+\frac{0,14^2}{9,8}.l\)(l lấy đơn vị là mét)

Giải phương trình ta được \(l=0,8m\)

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

6 tháng 6 2016

Dùng bảo toàn cơ năng lớp 10! đề không sai !

 \frac{mv^{2}}{2}=mgh Với biên độ góc là 600 vẽ hình sẽ thấy độ cao h=\frac{l}{2}

Nên: \frac{mv^{2}}{2}=mg\frac{l}{2} \Rightarrow l=\frac{v^{2}}{g}=\frac{4^{2}}{10}=1,6m  



 


 

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

2 tháng 4 2017

Từ hệ thức độc lập thời gian giữa li độ dài và vận tốc:

Đáp án C