Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Thời gian canô đi ngược dòng:
Vận tốc của canô khi đi ngược dòng:
vng = vcn - vn = 25 - 2 = 23 (Km)
Thời gian canô đi:
\(v_{ng}=\frac{S}{t_{ng}}\Rightarrow t_{ng}=\frac{S}{v_{ng}}=3,91\left(h\right)=\) 3 giờ 54 phút 36 giây
b/ Thời gian canô xuôi dòng:
Vận tốc của canô khi đi ngược dòng:
vx = vcn + vn = 25 + 2 = 27 (Km)
\(v_x=\frac{S}{t_x}\Rightarrow t_x=\frac{S}{v_x}=3,33\left(h\right)=\)3 giờ 15 phút 18 giây
Thời gian cả đi lẫn về:
t = tng + tx = 7h14ph24giây
a) Vận tốc của ca nô khi đi ngược dòng là:
25-2=23 (km)
Vậy thời gian ca nô đi ngược dòng từ bến nọ đến bến kia là:
90:23= ( ko tính được)
Bg:a.t1=s/2:v1=360:2:5=36 (s)
t2=s2/v2=s/2:v2=360:2:3=60(s)
b. vtb=s1+s2/t1+t2= s/t1+t2=360/36+60=3,75(m/s)
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
Đáp án C
Vận động viên chuyển động so với khán giả xem lướt ván.