K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số số hạng là \(\dfrac{2n-1-1}{2}+1=\dfrac{2n-2}{2}+1=n\left(số\right)\)

Tổng của các số hạng trong M là:

\(M=\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n\cdot n}{2}=n^2\) là số chính phương

3 tháng 6 2024

5 tháng 2 2021

Ta có: SSH = (2n - 1 - 1) : 2 + 1 = n (số)

\(\Rightarrow M=\frac{\left(2n-1+1\right)n}{2}=\frac{2n^2}{2}=n^2\)

Vậy M là 1 số chính phương

25 tháng 3 2018

Bài 1 : dễ rồi tính ra là xong. 

Bài 2 : 

Ta có : 

\(M=1+3+5+...+\left(2n-1\right)\)

Số số hạng : 

\(\frac{2n-1-1}{2}=\frac{2n-2}{2}=\frac{2\left(n-1\right)}{2}=n-1\)

Tổng : 

\(\frac{\left(2n-1+1\right).\left(n-1\right)}{2}=\frac{2n\left(n-1\right)}{2}=n\left(n-1\right)\)

Vì \(n\left(n-1\right)\) không là số chính phương nên \(M\) không là số chính phương 

Vậy M không là số chính phương. 

Chúc bạn học tốt ~ 

25 tháng 3 2018

Bài 2: 

Có gì đó sai sai thì phải .... Theo mình được biết thì M là số chính phương

9 tháng 5 2017

i can't help you

sorry because i in grade 5

9 tháng 5 2017

yes me too in grade 5

31 tháng 12 2018

số số hạng của tổng M là :

[(2n-1) -1] :2+1

=( 2n-2) :2 +1

=2(n-1):2+1

= n-1+1=n

=>M = (2n-1+1)n:2

=> M = (2n-1+1) n:2

=> M = 2n.n:2 = n^2

=> M là số chính phương

13 tháng 3 2018

M=1+3+5....+(2n-1)

Số số hạng (2n-1-1)/2+1=n số hạng

Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương

13 tháng 3 2018

toán lớp mấy

Bài 2: 

Số số hạng là:

(2n-1-1):2+1=n(số)

Tổng là:

\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)

15 tháng 3 2019

1.

    Không biết là đề sai hay đúng nhưng hình như không có số nào

2

   Ta có  : 88888888 (n số 8)

=> Tổng của 88888888..... (n số 8) = 8n

   8n - 9 + n

= 9n - 9

= 9.(n-1) 

=> 88888888..... (n số 8) - 9 + n chia hết cho 9

3.

Tổng của các chữ số đó là 

(1.2012) + 4 + (3.2012)

=2012 + 4 + 6036

=8052

Mà 8052 chia hết cho 2

=> 1111111111111111111...(2012 chữ số 1)43333333333333333333...(2012 chữ số 3) là hợp số

2 tháng 8 2016

1)

\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)

\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)

Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3

=> 3.7.(n+1)n chia hết cho 6

=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6

2)

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)

Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

12n chia hết cho 6

=>\(n^3-13n\) chia hết cho 6

3)

\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)

\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3

2 tháng 8 2016

thanks bạn

Câu 2:

b) ĐKXĐ: \(x\ne-1\)

Để \(\frac{3x+5}{x+1}\) là số nguyên thì \(3x+5⋮x+1\)

\(\Leftrightarrow3x+3+2⋮x+1\)

\(3x+3⋮x+1\)

nên \(2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)\)

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{0;-2;1;-3\right\}\)(tm)

Vậy: Khi \(x\in\left\{0;-2;1;-3\right\}\) thì \(\frac{3x+5}{x+1}\) là số nguyên

Câu 3:

a) ĐKXĐ: \(n\ne-3\)

Gọi \(d=ƯCLN\left(n+4;n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow n+4-n-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)

hay \(\frac{n+4}{n+3}\) là phân số tối giản(đpcm)

b) Gọi \(e=ƯCLN\left(n+2;2n+5\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+4⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow2n+4-2n-5⋮e\)

\(\Leftrightarrow-1⋮e\Leftrightarrow e=1\)

hay \(ƯCLN\left(n+2;2n+5\right)=1\)

\(\Leftrightarrow\frac{n+2}{2n+5}\) là phân số tối giản

c) Gọi \(f=ƯCLN\left(2n+1;3n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮f\\3n+1⋮f\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮f\\6n+2⋮f\end{matrix}\right.\Leftrightarrow6n+3-6n-2⋮f\)

\(\Leftrightarrow1⋮f\Leftrightarrow f=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)

hay \(\frac{2n+1}{3n+1}\) là phân số tối giản(đpcm)