Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề nhé bạn
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
Đa thức trở thành \(t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+3t-4t-12\)
\(=t\left(t+3\right)-4\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)
Thay vào ta được
\(\left(x^2+x+4\right)\left(x^2+x-3\right)\)
a)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b)
Đặt \(x^2+3x+1=t\), ta có:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2+3x-2x-6\)
\(=t\left(t+3\right)-2\left(t+3\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
a, \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)
\(=\left(x^2+3x+1,5\right)^2-2,5^2\)
\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)
\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-5\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x+3\right)-5\left(x^2+x+3\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
đề sai rồi bạn ơi
Sai đề rồi đa thức này không có nghiêm làm sao phân tích được