Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a mũ chẵn \(\ge\)0.
=>\(2\times y-8=0\)
=> 2 x y = 8
=> y = 4
Ta có : 2x-y = 0.
=> 2x=y=8
=>x= 4
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
a) \(\left(\dfrac{1}{2}x-3\right)\left(-\dfrac{1}{3}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=0+3\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{1}{2}\\x=0-\left(-\dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{1}{3}\end{matrix}\right.\)
d) \(9x^2=1\)
\(\Leftrightarrow x^2=1:9\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
\(\Leftrightarrow x^2=\left(\dfrac{1}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(\left(x^2.y\right)^5.\left(x^2.y^2\right)^7.\left(x.y^2\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)
\(=x^{33}.y^{31}\)