Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)-1=0\) (ĐKXĐ : \(1\le x\le2\) )
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}+\sqrt{x+2}-\sqrt{\left(2-x\right)\left(x-1\right)}-\sqrt{x-1}-1=0\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}-\left(2-\sqrt{x+2}\right)-\sqrt{\left(2-x\right)\left(x-1\right)}+\left(1-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{\sqrt{x+2}+2}-\sqrt{\left(2-x\right)\left(x-1\right)}+\frac{2-x}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-2}=0\\\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}=0\end{array}\right.\)
Với \(\sqrt{x-2}=0\) => x = 2 (TMĐK)
Với \(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}=0\) , từ điều kiện \(1\le x\le2\) ta luôn có : \(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}>0\)
Vậy phương trình có nghiệm : x = 2
\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)(ĐKXĐ : \(x\le-1\)hoặc \(x\ge-\frac{1}{4}\))
\(\Leftrightarrow\left(\sqrt{4x^2+5x+1}-2\sqrt{7}x\right)-\left(\sqrt{4x^2-4x+4}-2\sqrt{7}x\right)-\left(9x-3\right)=0\)
\(\Leftrightarrow\frac{\left(4x^2+5x+1\right)-28x^2}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-\frac{\left(4x^2-4x+4\right)-28x^2}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\frac{-24x^2+5x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}+\frac{24x^2+4x-4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\frac{-\left(3x-1\right)\left(8x+1\right)}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}+\frac{4\left(3x-1\right)\left(2x+1\right)}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-1=0\\\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3=0\end{array}\right.\)
Với 3x - 1 = 0 => x = \(\frac{1}{3}\) (TMĐK)
Với \(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3=0\) , Từ điều kiện \(\left[\begin{array}{nghiempt}x\le-1\\x\ge-\frac{1}{4}\end{array}\right.\) ta luôn có : \(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3>0\)
Vậy phương trình có nghiệm : \(x=\frac{1}{3}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
8.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)
\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)
\(\Leftrightarrow x=6\)
6.
ĐKXD: ...
\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x=3\)
7.
\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)
\(\Rightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)
\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)
Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)