\(\left(x-\frac{3}{2}\right).\left(x^2+1\right)=0\)

lm ơn giúp mik vs

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

=> x - 3/2 = 0 => x = 3/2 ( TH1 )

=> x2 + 1 = 0 ; x2 = -1

=> x thuộc rỗng

=> x = 3/2

17 tháng 7 2018

a)(x − 12)2 = 0

=>x − 12 = 0

=> x = 12

b) (x+12)2 = 0,25

=> x + 12 = 0,5 hoặc x + 12= -0,5

=> x = -11,5 hoặc x = -12,5

c) (2x−3)3 = -8

=> 2x - 3 = -2

=> x = 0,5

d) (3x−2)5 = −243

=> 3x - 2 = -3

=> x = -1/3

e) (7x+2)-1 = 3-2

=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)

=> 7x + 2 = 9

=> x = 1

f) (x−1)3 = −125

=> (x−1) = −5

=> x = -4

g) (2x−1)4 = 81

=> 2x - 1 = 3

=> x = 2

h) (2x−1)6 = (2x−1)8

=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1

=> x = 1/2 hoặc x = 1 hoặc x = 0

17 tháng 7 2018

a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy ..

c/ \(\left(2x-3\right)^3=-8\)

\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-3=-2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

d/ \(\left(3x-2\right)^5=-243\)

\(\left(3x-2\right)^5=\left(-3\right)^5\)

\(\Leftrightarrow3x-2=-3\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

e/ \(\left(x-1\right)^3=-125\)

\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)

\(\Leftrightarrow x-1=-5\)

\(\Leftrightarrow x=-4\)

Vậy..

f/ \(\left(2x-1\right)^4=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy...

g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)

\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy..

17 tháng 7 2016

a.

\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)

TH1:

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

TH2:

\(x-\frac{3}{4}=0\)

\(x=\frac{3}{4}\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)

b.

\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)

TH1:

\(\frac{1}{2}x-3=0\)

\(\frac{1}{2}x=3\)

\(x=3\div\frac{1}{2}\)

\(x=3\times2\)

\(x=6\)

TH2:

\(\frac{2}{3}x+\frac{1}{2}=0\)

\(\frac{2}{3}x=-\frac{1}{2}\)

\(x=-\frac{1}{2}\div\frac{2}{3}\)

\(x=-\frac{1}{2}\times\frac{3}{2}\)

\(x=-\frac{3}{4}\)

Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)

c.

\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)

\(-\frac{4}{3}x=\frac{13}{3}\)

\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)

\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)

\(x=-\frac{13}{4}\)

d.

\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)

\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)

\(x=5\)

7/4.x+3/2=-4/5

7/4.x=-4/5-3/2

7/4.x=-23/10

x=-23/10:7/4

x=-46/35

vậy x=-46/35

1/4+3/4.x=3/4

1.x=3/4

x=3/4:1

x=3/4

vậy x=3/4

x.(1/4+1/5)-(1/7+1/8)=0

x.9/20-15/56=0

x.51/280=0

x=0:51/280

x=0

vậy x=0

3/35-(3/5+x)=2/7

(3/5+x)=3/35-2/7

(3/35+x)=-1/5

x=-1/5-3/5

x=-4/5

vậy x=-4/5

\(a,1\frac{3}{4}.x+1\frac{1}{2}=\frac{4}{5}\)

\(\frac{7}{4}.x=\frac{4}{5}-\frac{3}{2}\)

\(\frac{7}{4}.x=\frac{-7}{10}\)

\(x=\frac{-7}{10}:\frac{7}{4}\)

\(x=\frac{-2}{5}\)

\(b,\frac{1}{4}+\frac{3}{4}.x=\frac{3}{4}\)

\(\frac{3}{4}.x=\frac{3}{4}-\frac{1}{4}\)

\(\frac{3}{4}.x=\frac{1}{2}\)

\(x=\frac{1}{2}:\frac{3}{4}\)

\(x=\frac{2}{3}\)

\(c,x.\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)

\(x.\frac{9}{20}-\frac{15}{56}=0\)

\(x.\frac{9}{20}=\frac{15}{56}\)

\(x=\frac{15}{56}:\frac{9}{20}\)

\(x=\frac{25}{42}\)

\(d,\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)

\(\frac{3}{5}+x=\frac{3}{35}-\frac{2}{7}\)

\(\frac{3}{5}+x=\frac{-1}{5}\)

\(x=\frac{-1}{5}-\frac{3}{5}\)

\(x=\frac{-4}{5}\)

Học tốt

7 tháng 1 2017

a)  2(x-1)+3(x-3)=-2                                                b)  x-1/3=x-2/2

2x-2+3x-9=-2                                                              2 (x-1)=3(x-2)

(2x+3x)+(-2-9)=-2                                                        2x-2=3x-6

5x+(-11)=-2                                                                 2x-3x=-6+2

5x=-2+11                                                                   -1x=-4

5x=9                                                                          x=4

x=1,8

Nhớ nha!

19 tháng 9 2016

a ) \(3-4.\left|5-6x\right|=7\)

\(\Leftrightarrow4.\left|5-6x\right|=-4\)

\(\Leftrightarrow\left|5-6x\right|=-1\)

\(\Leftrightarrow\) Không thõa mãn ( vì \(x\ge0\) )

19 tháng 9 2016

b) Do \(\left|x+2\right|\ge0;\left|x+\frac{3}{5}\right|\ge0;\left|x+\frac{1}{2}\right|\ge0\)

=> \(4x\ge0\)

=> \(x\ge0\)

Lúc này ta có: \(\left(x+2\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{1}{2}\right)=4x\)

=> \(\left(x+x+x\right)+\left(2+\frac{3}{5}+\frac{1}{2}\right)=4x\)

=> \(3x+\frac{31}{10}=4x\)

=> \(4x-3x=\frac{31}{10}\)

=> \(x=\frac{31}{10}\)

Vậy \(x=\frac{31}{10}\)

c) Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)

=> \(101x\ge0\)

=> \(x\ge0\)

Lúc này ta có: \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)

=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)

               100 số x

=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)

=> \(\frac{101.50}{101}=101x-100x\)

=> \(x=50\)

Vậy x = 50

30 tháng 12 2019

d,\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\\ \Leftrightarrow\left(x-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\\ \Leftrightarrow x-\frac{2}{9}=\frac{4}{9}\\ \Leftrightarrow x=\frac{6}{9}\)

Vậy...

30 tháng 12 2019

a) \(\left(x-3\right).\left(4-5x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\4-5x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+3\\5x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=4:5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{4}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{3;\frac{4}{5}\right\}.\)

b) \(\left|x+\frac{3}{4}\right|+\frac{1}{3}=0\)

\(\Rightarrow\left|x+\frac{3}{4}\right|=0-\frac{1}{3}\)

\(\Rightarrow\left|x+\frac{3}{4}\right|=-\frac{1}{3}.\)

Ta luôn có: \(\left|x\right|\ge0\) \(\forall x.\)

\(\Rightarrow\left|x+\frac{3}{4}\right|>-\frac{1}{3}\)

\(\Rightarrow\left|x+\frac{3}{4}\right|\ne-\frac{1}{3}.\)

Vậy \(x\in\varnothing.\)

c) \(5^x.\left(5^3\right)^2=625\)

\(\Rightarrow5^x.5^6=5^4\)

\(\Rightarrow5^{x+6}=5^4\)

\(\Rightarrow x+6=4\)

\(\Rightarrow x=4-6\)

\(\Rightarrow x=-2\)

Vậy \(x=-2.\)

Chúc bạn học tốt!