Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\) là Vế Phải
\(ab+bc+ca-x^2\)là vế trái .
Biến đổi VP ta có :
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ab\)
\(=3x^2-2x\left(a+b+c\right)+\left(ab+bc+ca\right)\)
Thay \(a+b+c\)là \(2x\)ta được :
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)= VP
\(=-x^2+ab+bc+ca=VT\)
=> đpcm
-
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
1. a) $(5-2x)^2-16=0$
$=>(5-2x)^2-4^2=0$
$=>(5-2x-4)(5-2x+4)=0$
$=>(1-2x)(9-2x)=0$
\(=>\left[{}\begin{matrix}1-2x=0=>x=0,5\\9-2x=0=>x=4,5\end{matrix}\right.\)
b) $x^2-4x=29$
$=>x^2-4x-29=0$
$=>(x^2-4x+4)-33=0$
$=>(x-2)^2-(\sqrt{33})^2=0$
$=>(x-2-\sqrt{33})(x-2+\sqrt{33})=0$
\(=>\left[{}\begin{matrix}x-2-\sqrt{33}=0=>x=\sqrt{33}+2\\x-2+\sqrt{33}=0=>x=2-\sqrt{33}\end{matrix}\right.\)
Bài 1:
a) \(\left(5-2x\right)^2-16=0\) (1)
\(\Leftrightarrow\left(5-2x\right)^2=16\)
\(\Leftrightarrow5-2x=\pm4\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{1}{2};\dfrac{9}{2}\right\}\)
b) \(x^2-4x=29\) (2)
\(\Leftrightarrow x^2-4x-29=0\)
\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{33}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+2\sqrt{33}}{2}\\x=\dfrac{4-2\sqrt{33}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{33}\\x=2-\sqrt{33}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{2-\sqrt{33};2+\sqrt{33}\right\}\)
c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\) (3)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9x^2+18x+9=15\)
\(\Leftrightarrow x^3+27x-27-x^3+27+18x+9=15\)
\(\Leftrightarrow45x+9=15\)
\(\Leftrightarrow45x=15-9\)
\(\Leftrightarrow45x=6\)
\(\Leftrightarrow x=\dfrac{2}{15}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{2}{15}\right\}\)
d) \(2\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(2x-3\right)+x\left(x^2+8\right)=\left(x+1\right)\left(x^2-x+1\right)\)(4)
\(\Leftrightarrow2\left(x^2-25\right)-\left(2x^2-3x+4x-6\right)+x^3-8x=x^3+1\)
\(\Leftrightarrow2x^2-50-\left(2x^2+x-6\right)+x^3-8x=x^3+1\)
\(\Leftrightarrow2x^2-50-2x^2-x+6-8x=1\)
\(\Leftrightarrow-44-9x=1\)
\(\Leftrightarrow-9x=1+45\)
\(\Leftrightarrow-9x=45\)
\(\Leftrightarrow x=-5\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-5\right\}\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a/ x3 + x2 z + y2 z - xyz + y3
= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)
= (x2 - xy + y2)(x + y + z)