Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)tương tự những cái kia rồi triệt tiêu còn phân thức đầu vs cuối
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{2014}{x\left(x+2014\right)}\)
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2014}-\dfrac{x+2014}{x\left(x+2014\right)}-\dfrac{x}{x\left(x+2014\right)}\)
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}\)
\(=\dfrac{2014}{x\left(x+2014\right)}\)
\(f\left(x\right)=x^3-3x^2+3x+3=\left(x-1\right)^3+2\)
Thay vào là OK!!
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)
\(\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Ta có :
4(x - y)(y - z) = 4(2013k - 2014k)(2014k - 2015k)
=4.(-k).(-k) = 4k2 (1)
(z - x)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ 1 và 2
=> 4(x - y)(y - z) = (z - x)2
\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)
Dễ thấy cái vế sau > 0 nên x=2016
Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)
\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)
\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)
\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)
\(\Leftrightarrow90x^3+15x^2-15x=0\)
\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)
a. \(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
\(\rightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)
\(\rightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)
\(\rightarrow\left(x-2016\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1014}+\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\ne0\)
\(\rightarrow x-2016=0\)
\(\rightarrow x=2016\)
Vậy ...
\(P=\frac{x}{\sqrt{x}-3}\Leftrightarrow P-12=\frac{x}{\sqrt{x}-13}-12\)
\(\Leftrightarrow P-12=\frac{x-12\sqrt{x}+36}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}\)
Mà \(\left(\sqrt{x}-6\right)^2\ge0va\sqrt{x}-3>0\left(x>9\right)\)
\(\Rightarrow\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}\ge0\)
Dấu = xảy ra <=> \(\left(\sqrt{x}-6\right)^2=0\Leftrightarrow\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
Lúc đó \(P-12=0\Rightarrow P=12\)
Vậy GTNN của \(P=12\Leftrightarrow x=36\)
Hìiiiiiiiiiiiiiiiiiiiiiiiiiiiii