\(\left(\frac{1}{8}+\frac{1}{8.15}+\frac{1}{15.22}+...+\frac{1}{43.50}\right).\frac{4-3-5-...-49...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

Bài 1 :

\(\left(\frac{1}{8}+\frac{1}{8.15}+\frac{1}{15.22}+...+\frac{1}{43.50}\right)\frac{4-3-5-7-...-49}{217}\)

\(=\frac{1}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{43}-\frac{1}{50}\right).\frac{5-\left(1+3+5+7+...+49\right)}{217}\)

\(=\frac{1}{7}\left(1-\frac{1}{50}\right).\frac{5-\left(12.50\right)+25}{217}\)

\(=\frac{1}{7}.\frac{49}{50}.\frac{5-625}{217}\)

\(=\frac{-2}{5}\)

31 tháng 3 2019

Bài 2 :

\(B=\frac{x^2+17}{x^2+7}=\frac{\left(x^2+7\right)+10}{x^2+7}=1+\frac{10}{x^2+7}\)

Ta có : \(x^2\ge0\). Dấu '' = '' xảy ra khi :

\(x=0\Rightarrow x^2+7\ge7\)( 2 vế dương )

\(\Rightarrow\frac{10}{x^2+7}\le\frac{10}{7}\)

\(\Rightarrow1+\frac{10}{x^2+7}\le1+\frac{10}{7}\)

\(\Rightarrow B\le\frac{17}{7}\)

Dấu '' = '' xảy ra < = > x = 0

Vậy Max \(B=\frac{17}{7}\Leftrightarrow x=0\) 

1 tháng 3 2019

Chỗ phức tạp là ở biểu thức trong ngoặc thôi

Ta có

\(\dfrac{1}{8}+\dfrac{1}{8\cdot15}+\dfrac{1}{15\cdot22}...+\dfrac{1}{43\cdot50}\)

\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{22}+....+\dfrac{1}{43}-\dfrac{1}{50}\right)\right]\)

\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{50}\right)\right]=\dfrac{1}{8}\cdot\dfrac{3}{200}=\dfrac{3}{1600}\)

20 tháng 7 2020

1/7 là do mẫu cách nhau 7 đơn vị đúng ko

1 tháng 9 2019

A = \(\left(\frac{1}{8}+\frac{1}{8.15}+\frac{1}{15.22}+...+\frac{1}{43.50}\right)\cdot\frac{4-3-5-7-...-49}{217}\)

A = \(\frac{1}{7}.\left(\frac{7}{1.8}+\frac{7}{8.15}+\frac{7}{15.22}+...+\frac{7}{43.50}\right)\cdot\frac{4-\left(3+5+7+...+49\right)}{217}\)

A = \(\frac{1}{7}.\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{43}-\frac{1}{50}\right)\cdot\frac{4-\left(49+3\right)\left[\left(49-3\right):2+1\right]:2}{217}\)

A = \(\frac{1}{7}\cdot\left(1-\frac{1}{50}\right)\cdot\frac{4-52.24:2}{217}\)

A = \(\frac{1}{7}\cdot\frac{49}{50}\cdot\frac{4-624}{217}\)

A = \(\frac{7}{50}\cdot\frac{-620}{217}=-\frac{2}{5}\)

DD
14 tháng 7 2021

\(A=\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+...+\frac{3}{106.113}\)

\(=\frac{3}{7}\left(\frac{7}{1.8}+\frac{7}{8.15}+\frac{7}{15.22}+...+\frac{7}{106.113}\right)\)

\(=\frac{3}{7}\left(\frac{8-1}{1.8}+\frac{15-8}{8.15}+\frac{22-15}{15.22}+...+\frac{113-106}{106.113}\right)\)

\(=\frac{3}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+\frac{1}{106}-\frac{1}{113}\right)\)

\(=\frac{3}{7}\left(1-\frac{1}{113}\right)=\frac{48}{113}\)

\(B=\frac{25}{50.55}+\frac{25}{55.60}+...+\frac{25}{95.100}\)

\(=5\left(\frac{5}{50.55}+\frac{5}{55.60}+...+\frac{5}{95.100}\right)\)

\(=5\left(\frac{55-50}{50.55}+\frac{60-55}{55.60}+...+\frac{100-95}{95.100}\right)\)

\(=5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)

\(=5\left(\frac{1}{50}-\frac{1}{100}\right)=\frac{1}{20}\)

Giá trị của biểu thức đã cho là: 

\(A-B=\frac{48}{113}-\frac{1}{20}=\frac{847}{2260}\)

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0