Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
Bài này nhân chứ sao lại chia :v Có trong SBT mà :v
\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right).\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left[\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{2\left(x^2+4\right)-x\left(x^2+4\right)}\right].\dfrac{x^2-x-2}{x}\)
\(=\left[\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+3\right)}\right].\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(2-x\right)-4x^2}{2\left(2-x\right)\left(x^2+4\right)}.\dfrac{x^2+x-2x-2}{x^2}\)
\(=\dfrac{-x\left(x^2+4\right)}{2\left(2-x\right)\left(x^2+4\right)}.\dfrac{\left(x+1\right)\left(x-2\right)}{x^2}\)
\(=\dfrac{x+1}{2x}\)
\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2-4x+4+4x\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x+1}{2x}\)
( x2−2x / 2x2+8 − 2x2 / 8−4x+2x2−x3 ).(1− 1/x − 2/x2 )
=[ x2−2x / 2(x2+4) − 2x2 / 2(x2+4)−x(x2+4) ]. x2−x−2 / x2
=[x2−2x / 2(x2+4) − 2x2 / (2−x)(x2+3)] . x2−x−2 / x2
=(x2−2x)(2−x)−4x2 / 2(2−x)(x2+4) . x2+x−2x−2 / x2
= −x(x2+4) / 2(2−x)(x2+4). (x+1)(x−2) / x2
=x+1 / 2x
\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
câu nào cũng ghi lại đề nha
a) \(x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b)\(x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\left(x+1\right)\left(x+2\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{1}{x-2}+3-\dfrac{3-x}{x-2}=0\)
\(\Leftrightarrow\dfrac{1+3\left(x-2\right)-\left(3-x\right)}{x-2}=0\)
\(\Leftrightarrow\dfrac{1+3x-6-3+x}{x-2}=0\) ( đk \(x\ne2\) )
\(\Leftrightarrow4x-8=0\Rightarrow x=2\)
đ) \(\dfrac{8-x}{x-7}-8-\dfrac{1}{x-7}=0\)
\(\Leftrightarrow\dfrac{8-x-8\left(x-7\right)-1}{x-7}=0\) (đk \(x\ne7\))
\(\Leftrightarrow8-x-8x+56-1=0\)
\(\Leftrightarrow-9x+63=0\)
\(\Leftrightarrow x=7\)
a: \(\left[\dfrac{1}{2}x^2\left(2x-1\right)^m-\dfrac{1}{2}x^{m+2}\right]:\dfrac{1}{2}x^2=0\)
\(\Leftrightarrow\left(2x-1\right)^m-x^m=0\)
\(\Leftrightarrow\left(2x-1\right)^m=x^m\)
=>2x-1=x
=>x=1
b: \(\left(2x-3\right)^8=\left(2x-3\right)^6\)
\(\Leftrightarrow\left(2x-3\right)^6\cdot\left(2x-4\right)\left(2x-2\right)=0\)
hay \(x\in\left\{\dfrac{3}{2};2;1\right\}\)
c: \(\Leftrightarrow4x^2-4x+1+y^2-\dfrac{2}{3}y+\dfrac{1}{9}+\dfrac{6}{9}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-\dfrac{1}{3}\right)^2+\dfrac{6}{9}=0\)(vô lý)
\(=\left(\dfrac{2x-x^2}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{2+x-x^2}{x^2}\)
\(=\dfrac{x\left(2-x\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{-x\left(x^2-4x+4\right)-4x^2}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)
\(=\dfrac{-x^3-4x}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)
\(=\dfrac{-x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)