\(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\left(\dfrac{\sqrt{x}+2}{2}\right)^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

9 tháng 6 2017

a, \(ĐKXĐ:a;b>0;a\ne2b\\ \)

Xét: \(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{2\left(a+b\right)}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{a+2b+\sqrt{2ab}}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}=\dfrac{1}{\sqrt{a}-\sqrt{2b}}\)\(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}=\dfrac{\left(\sqrt{a}+\sqrt{2b}\right)\left(a-\sqrt{2ab}+2b\right)}{\sqrt{2b}\left(\sqrt{a}+\sqrt{2b}\right)}-\sqrt{a}=\dfrac{\left(\sqrt{a}-\sqrt{2b}\right)^2}{\sqrt{2b}}\)\(\Rightarrow P=\dfrac{\sqrt{a}-\sqrt{2b}}{\sqrt{2b}}=\sqrt{\dfrac{a}{2b}}-1\)

b, Tự lm nhé.

9 tháng 3 2019

Căn bậc hai. Căn bậc ba

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

27 tháng 10 2017

Bài 2: a) Ta có: Q=\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) -\(\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\) =\(\dfrac{1}{\sqrt{x}-1}\) -\(\left(\dfrac{x+2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\left(\dfrac{x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) =

27 tháng 10 2017

Còn lại bn tính tiếp

1 tháng 2 2019

\(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\\ =2\sqrt{5}+\left|1-\sqrt{5}\right|\\ =2\sqrt{5}+\sqrt{5}-1\\ =3\sqrt{5}-1\)

\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}2\sqrt{3}\\ =\dfrac{1}{\sqrt{3}+1}+\dfrac{2\sqrt{3}}{\sqrt{3}-1}\\ =\dfrac{\sqrt{3}-1+2\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}^2-1^2}\\ =\dfrac{\sqrt{3}-1+6+2\sqrt{3}}{2}\\ =\dfrac{3\sqrt{3}+5}{2}\)

Bài 2:

a: ĐKXĐ: 1/x+1>=0

=>x+1>0

=>x>-1

B: ĐKXĐ: (x+1)(x-1)>=0

=>x>=1 hoặc x<=-1

19 tháng 8 2018

a , thu gọn

\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right]\)

\(A=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(A=-\dfrac{3}{\sqrt{x}+3}\)

b , tự làm

19 tháng 8 2018

\(a\text{) Để biểu thức xác định }\\ \text{thì }\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

\(\text{b) }A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\\ =\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\\ =\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ =\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\dfrac{-3}{\sqrt{x}+3}\)

\(c\text{) Để }A\le-\dfrac{1}{3}\\ \text{thì }\Rightarrow\dfrac{-3}{\sqrt{x}+3}\le-\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}\ge\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}-\dfrac{1}{3}\ge0\\ \Rightarrow\dfrac{9}{3\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{9-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{\sqrt{x}-6}{\sqrt{x}+3}\le0\\ \Leftrightarrow\sqrt{x}-6\ge0\left(\text{Vì }\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}\ge6\\ \Leftrightarrow x\ge36\)

\(d\text{) Do }\sqrt{x}\ge0\\ \Rightarrow\sqrt{x}+3\ge3\\ \Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\\ \text{Dấu }"="\text{ }xảy\text{ }ra\text{ }khi:\text{ }x=0\)

Vậy..............

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.