K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

\(\left\{{}\begin{matrix}x+y=2a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=\left(2a+1\right)^2\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2xy=4a^2+4a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-2a+3+2xy=4a^2+4a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{3a^2+6a-2}{2}\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(xy=\frac{3a^2+6a-2}{2}=\frac{3}{2}\left(a^2+2a+1\right)-\frac{5}{2}=\frac{3}{2}\left(a+1\right)^2-\frac{5}{2}\ge-\frac{5}{2}\)

\(Min=-\frac{5}{2}\Leftrightarrow a+1=0\Leftrightarrow a=-1\)

NV
15 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\\left(x+y\right)^2-2xy=a^2+2a-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\2xy=\left(2a-1\right)^2-\left(a^2+2a-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\xy=\frac{3a^2-6a+4}{2}\end{matrix}\right.\)

Hệ pt đã cho có nghiệm \(\Leftrightarrow\left(2a-1\right)^2\ge4\left(\frac{3a^2-6a+4}{2}\right)\)

\(\Leftrightarrow4a^2-4a+1\ge6a^2-12a+8\)

\(\Leftrightarrow2a^2-8a+7\le0\Rightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)

Khi đó: \(f\left(a\right)=xy=\frac{3a^2-6a+4}{2}=\frac{3}{2}a^2-3a+2\)

Xét \(f\left(a\right)\) trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)

\(\frac{3}{2}>0;\) \(\frac{3}{2.\frac{3}{2}}=1< \frac{4-\sqrt{2}}{2}\Rightarrow f\left(a\right)\) đồng biến trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)

\(\Rightarrow f\left(a\right)_{min}=f\left(\frac{4-\sqrt{2}}{2}\right)=\frac{11-6\sqrt{2}}{4}\)

13 tháng 1 2018

giúp em với @Akai Haruma Võ Đông Anh Tuấn Nguyễn Huy Tú Nguyễn Huy Thắng

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x=2y+3-m\\ 2x+y=3(m+2)\end{matrix}\right.\)

\(\Rightarrow 2(2y+3-m)+y=3(m+2)\)

\(\Leftrightarrow y=m\)

\(\Rightarrow x=2y+3-m=2m+3-m=m+3\)

Vậy HPT có nghiệm $(x,y)=(m+3,m)$

\(\Rightarrow S=x^2+y^2=(m+3)^2+m^2=2m^2+6m+9\)

\(=2(m+\frac{3}{2})^2+\frac{9}{2}\geq \frac{9}{2}\)

Vậy \(S_{\min}=\frac{9}{2}\Leftrightarrow (m+\frac{3}{2})^2=0\Leftrightarrow m=-\frac{3}{2}\)

21 tháng 2 2021

pt(1) có nghiệm là 2 khoảng (-2;-1) và (1;2)

pt(2) có 2 nghiệm phân biệt là x=a+1 hay x=a-2

Để hệ có nghiệm duy nhất thì:

\(\left\{{}\begin{matrix}a-2< -2\\-2\le a+1\le-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2\le a-2\le-1\\a+1>-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a-2< 1\\1\le a+1\le2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1\le a-2\le2\\a+1>2\end{matrix}\right.\)

Hợp nghiệm các trường hợp trên ta được:

\(-3\le a\le-2\) hay \(0\le a\le1\)hay \(3\le a\le4\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3