Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiện tại mới nghĩ được câu b thôi
b/ \(u_1=\dfrac{1}{2};u_2=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3};u_3=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}...\)
Nhận thấy \(u_n=\dfrac{n}{n+1}\) , ta sẽ chứng minh bằng phương pháp quy nạp
\(n=k\Rightarrow u_k=\dfrac{k}{k+1}\)
Chứng minh cũng đúng với \(\forall n=k+1\)
\(\Rightarrow u_{k+1}=\dfrac{k+1}{k+2}\)
Ta có: \(u_{k+1}=\dfrac{1}{2-u_k}=\dfrac{1}{2-\dfrac{k}{k+1}}=\dfrac{k+1}{k+2}\)
Vậy biểu thức đúng với \(\forall n\in N\left(n\ne0\right)\)
\(\Rightarrow limu_n=lim\dfrac{n}{n+1}=lim\dfrac{1}{1+\dfrac{1}{n}}=1\)
\(u_1=\sqrt{3}=tan\frac{\pi}{3}\)
Mặt khác \(tan\frac{\pi}{8}=\sqrt{2}-1\Rightarrow u_{n+1}=\frac{u_n+tan\frac{\pi}{8}}{1-u_n.tan\frac{\pi}{8}}\)
Nhìn công thức \(u_{n+1}\) có dạng \(tan\left(a+b\right)\) nên ta thay thử vài giá trị tìm quy luật
\(u_2=\frac{u_1+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.u_1}=\frac{tan\frac{\pi}{3}+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.tan\frac{\pi}{3}}=tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right)\)
\(u_3=\frac{tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right)+tan\frac{\pi}{8}}{1-tan\left(\frac{\pi}{3}+\frac{\pi}{8}\right).tan\frac{\pi}{8}}=tan\left(\frac{\pi}{3}+\frac{\pi}{8}+\frac{\pi}{8}\right)=tan\left(\frac{\pi}{3}+2.\frac{\pi}{8}\right)\)
Dự đoán số hạng tổng quát có dạng: \(u_n=tan\left(\frac{\pi}{3}+\left(n-1\right)\frac{\pi}{8}\right)\)
Giả sử công thức đúng với \(n=k\) hay \(u_k=tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(u_{k+1}=tan\left(\frac{\pi}{3}+k\frac{\pi}{8}\right)\)(các số hạng đầu đã kiểm tra nên chứng minh quy nạp chắc khỏi cần kiểm tra lại)
Thật vậy, với \(n=k+1\) ta có:
\(u_{k+1}=\frac{u_k+tan\frac{\pi}{8}}{1-u_k.tan\frac{\pi}{8}}=\frac{tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)+tan\frac{\pi}{8}}{1-tan\frac{\pi}{8}.tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}\right)}\)
\(=tan\left(\frac{\pi}{3}+\left(k-1\right)\frac{\pi}{8}+\frac{\pi}{8}\right)=tan\left(\frac{\pi}{3}+k\frac{\pi}{8}\right)\) (đpcm)
Dễ dàng nhận thấy \(u_n\) là dãy dương
Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)
Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)
Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)
Ta cần chứng minh \(u_{k+1}< 2\)
Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)
Do đó dãy bị chặn trên bởi 2
Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))
\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng
Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0
Lấy giới hạn 2 vế giả thiết:
\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)
\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)
Vậy \(\lim\left(u_n\right)=2\)
\(u_{n+1}-1=u_n\left(u_n-1\right)\Leftrightarrow\dfrac{1}{u_{n+1}-1}=\dfrac{1}{u_n-1}-\dfrac{1}{u_n}\Rightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Lan luot the i vo n:
\(\dfrac{1}{u_1}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)
\(\dfrac{1}{u_2}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)
...
\(\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Cong ve voi ve:
\(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}=\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\)
Do dãy tăng và ko bị chặn trên <bạn thay vô là biết>
\(\Rightarrow\lim\limits\left(u_{n+1}-1\right)=+\infty\Rightarrow\lim\limits\sum\limits^n_{i=1}\dfrac{1}{u_i}=\lim\limits\left(\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\right)=1\)
1:
a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)
\(u_5=2\cdot29+3=61\)
b: \(u_2=u_1+2^2\)
\(u_3=u_2+2^3\)
\(u_4=u_3+2^4\)
\(u_5=u_4+2^5\)
Do đó: \(u_n=u_{n-1}+2^n\)
\(u_3=u_2^2-u_2+2=4\)
\(S_1=1=\left(2-1\right)^2=\left(u_2-1\right)^2\)
\(S_2=2.5-1=9=\left(4-1\right)^2=\left(u_3-1\right)^2\)
Dự đoán \(S_n=\left(u_{n+1}-1\right)^2\)
Ta sẽ chứng minh bằng quy nạp:
- Với \(n=1;2\) đúng (đã kiểm chứng bên trên với \(S_1;S_2\))
- Giả sử đẳng thức đúng với \(n=k\)
Hay \(S_k=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)-1=\left(u_{k+1}-1\right)^2\)
Ta cần chứng minh:
\(S_{k+1}=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)\left(u_{k+1}^2+1\right)-1=\left(u_{k+2}-1\right)^2\)
Thật vậy:
\(S_{k+1}=\left[\left(u_{k+1}-1\right)^2+1\right]\left(u_{k+1}^2+1\right)-1\)
\(=\left(u_{k+1}^2-2u_{k+1}+2\right)\left(u_{k+1}^2+1\right)-1\)
\(=\left(u_{k+2}-u_{k+1}\right)\left(u_{k+2}+u_{k+1}-1\right)-1\)
\(=u_{k+2}^2-u_{k+2}-u_{k+1}^2+u_{k+1}-1\)
\(=u_{k+2}^2-u_{k+2}+2-u_{k+2}-1\)
\(=\left(u_{k+2}-1\right)^2\) (đpcm)
\(u_{n+1}^2=\dfrac{u_n^2}{1+u_n^2}\Rightarrow\dfrac{1}{u_{n+1}^2}=\dfrac{1}{u_n^2}+1\)
Đặt \(\dfrac{1}{u_n^2}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2018^2}\\v_{n+1}=v_n+1\end{matrix}\right.\)
\(v_n\) là cấp số cộng với công sai d=1 \(\Rightarrow v_n=\dfrac{1}{2018^2}+n-1\)
\(\Rightarrow u_n^2=\dfrac{1}{v_n}=\dfrac{1}{n+\dfrac{1}{2018^2}-1}\)
\(u_n^2< \dfrac{1}{2018^2}\Rightarrow\dfrac{1}{n+\dfrac{1}{2018^2}-1}< \dfrac{1}{2018^2}\Rightarrow n...\)