K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2023

ĐKXĐ : \(\left\{{}\begin{matrix}4x^2+2y+2\ge0\\3x+y\ge0\end{matrix}\right.\)

Ta có : \(\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\)

\(\Leftrightarrow\dfrac{3}{\sqrt{4x^2+3}+2x}.\dfrac{3}{\sqrt{y^2-2y+4}+y-1}=3\)

\(\Leftrightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=3\)

\(\Rightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)\)

\(\Leftrightarrow2x\sqrt{y^2-2y+4}+\left(y-1\right).\sqrt{4x^2+3}=0\)

\(\Leftrightarrow2x\sqrt{y^2-2y+4}=\left(1-y\right).\sqrt{4x^2+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2.\left(y^2-2y+4\right)=\left(y^2-2y+1\right).\left(4x^2+3\right)\\2x.\left(1-y\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=y^2-2y+1\\2x\left(1-y\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y-1\\2x=1-y\end{matrix}\right.\\2x\left(1-y\right)\ge0\end{matrix}\right.\)

Với 2x = 1 - y

Khi đó ta có \(\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\)

\(\Leftrightarrow\sqrt{4x^2-4x+4}-\sqrt{x+1}=2x+1\)      (ĐK : \(x\ge-1\))

\(\Leftrightarrow2\sqrt{x^2-x+1}-\sqrt{x+1}=2x+1\)

\(\Leftrightarrow2\left(\sqrt{x^2-x+1}-1\right)=2x+\sqrt{x+1}-1\)

\(\Leftrightarrow\dfrac{2x\left(x-1\right)}{\sqrt{x^2-x+1}+1}=2x+\dfrac{x}{\sqrt{x+1}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2x-2}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}\left(1\right)\end{matrix}\right.\)

Phương trình (1) 

<=> \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)

Xét vế trái : \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=\sqrt{\dfrac{4x^2+4x+1}{x^2-x+1}}=\sqrt{\dfrac{5x^2-5x+5-x^2+9x-4}{x^2-x+1}}\)

\(=\sqrt{5-\dfrac{x^2-9x+4}{x^2-x+1}}< \sqrt{5}\) (2) 

Lại có \(2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)

\(=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}\)

\(\ge2+\dfrac{\left(1+1+1+1+1\right)^2}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}=2+\dfrac{25}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}\)

Dấu "=" khi \(\dfrac{1}{\sqrt{x+1}+1}=\dfrac{1}{\sqrt{x^2-x+1}}\Leftrightarrow\left[{}\begin{matrix}x\approx3,498374325\\x\approx-0,7385661113\end{matrix}\right.\)

Khi đó \(VP\ge3,6\) (3) 

Từ (3) và (2) => (1) vô nghiệm 

Vậy x = 0 => y = 1

Với 2x = y - 1 kết hợp điều kiện 2x(1 - y) \(\ge0\)

ta được x = 0 ; y = 1 

Vậy (x ; y) = (0;1) 

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

NV
4 tháng 3 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

Phương trình đầu trở thành:

\(\left(1-b^2\right)a+a^2+b^2=2+\left(a^2-1\right)b\)

\(\Leftrightarrow a+b+a^2+b^2-a^2b-ab^2-2=0\)

\(\Leftrightarrow a-1+b-1-a^2\left(b-1\right)-b^2\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b^2\right)\left(a-1\right)+\left(a^2-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)\left(2+a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y+1\\y=1\end{matrix}\right.\)

Trường hợp \(y=1\) đơn giản bạn tự thay xuống giải

- Với \(x=y+1\)

\(2y^2-3\left(y+1\right)+6y+1-2\sqrt{1-y}+\sqrt{1-y}=0\)

\(\Leftrightarrow2y^2+3y-2-\sqrt{1-y}=0\)

\(\Leftrightarrow2y^2+2y-2+y-\sqrt{1-y}=0\)

\(\Leftrightarrow2\left(y^2+y-1\right)+\frac{y^2+y-1}{y+\sqrt{1-y}}=0\)

Nhớ nhìn căn thức và loại nghiệm theo ĐKXĐ

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

27 tháng 6 2019

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

27 tháng 6 2019

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm

NV
23 tháng 5 2019

ĐKXĐ:...

Biến đổi pt đầu:

\(2y\left(y-2x\right)+2\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)

\(\Leftrightarrow2\left(y+1\right)\left(y-2x\right)+y-1=3\sqrt{\left(y-1\right)\left(y+1\right)\left(y-2x\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{y-1}=a\\\sqrt{\left(y+1\right)\left(y-2x\right)}=b\end{matrix}\right.\) ta được:

\(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{y-1}=\sqrt{\left(y+1\right)\left(y-2x\right)}\left(1\right)\\\sqrt{y-1}=2\sqrt{\left(y+1\right)\left(y-2x\right)}\left(2\right)\end{matrix}\right.\)

Bình phương 2 vế phương trình dưới:

\(\Leftrightarrow y+1+y-2x+2\sqrt{\left(y+1\right)\left(y-2x\right)}=2y-2x+2\)

\(\Leftrightarrow2\sqrt{\left(y+1\right)\left(y-2x\right)}=1\) (3)

TH1: thế (1) vào (3) ta được:

\(2\sqrt{y-1}=1\Rightarrow y-1=\frac{1}{4}\Rightarrow y=\frac{5}{4}\Rightarrow x=\frac{41}{72}\)

TH2: thế (2) vào (3) ta được:

\(\sqrt{y-1}=1\Rightarrow y=2\Rightarrow x=\frac{23}{24}\)

25 tháng 5 2019

Em cảm ơn ạ !!