\(\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2.\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

= a^8 nha

27 tháng 6 2017

bài này là làm j vậy bạn

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

1 tháng 1 2022

a) \(x^7+x^5+1\)

\(=x^7-x+x^5-x^2+x^2+x+1\)

\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

b) \(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

21 tháng 9 2021

Bài 1

a,=10201               b,39601              c,2491

Bài 2

(2x+3y)^2  +2(3x+3y)+1=(2x+3y+1)^2

21 tháng 9 2021

Bài `1.`

`a, 101^2=(100+1)^2=100^2 +2.100.1 +1^2=10201`

`b, 199^2=(200-1)^2=200^2 - 2 . 200.1 +1^2=39601`

`c, 47 . 53=(50 - 3)(50+3) = 50^2 - 3^2=2491`

Bài `2.`

`(2x+3y)^2 +2 (2x+3y) +1 = (2x+3y)^2 +2 . (2x+3y).1+1^2=(2x+3y+1)^2`

26 tháng 3 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=> a=k\)x\(b\)

       \(c=k\)x\(d\)

Rồi thay vào sẽ làm ra

CHÚC BẠN HOC 

27 tháng 3 2019

Trả lời...............

Đặt a/b=c/d=k

Suy ra a=k . b ; c=k . d

Đó từ đấy bạn chỉ cần thay số vào mà tính thôi

......................học tốt........................

30 tháng 10 2019

Cần cù bù thông minh.

a

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

b

\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)