Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh
Bạn tham khảo bài tương tự tại đây:
Câu hỏi của Rồng Con - Toán lớp 8 | Học trực tuyến
VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)
=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)
=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(\left(ax+by+cz\right)^2\)
\(=c^2z^2+2bcyz+2acxz+b^2y^2+2abxy+a^2x^2\)
\(\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)\(\ge\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(\ge c^2z^2+2bcyz+2acxz+b^2y^2+2abxy+a^2x^2\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)
\(\ge2bcyz+2acxz+2abxy\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)\(-2bcyz-2acxz-2abxy\ge0\)
\(\Leftrightarrow\left(a^2y^2-2abxy+b^2x^2\right)+\left(a^2z^2-2acxz+c^2x^2\right)\)
\(+\left(b^2z^2-2bcyz+c^2y^2\right)\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)
(Điều trên đúng vì \(\hept{\begin{cases}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{cases}}\))
Vậy\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\) \(\ge\left(ax+by+cz\right)^2\)