Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{7}+\left(\sqrt{7}\right)^2}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)=2\left(25-21\right)=2\cdot4=8\)
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{5+\sqrt{21}}\sqrt{5-\sqrt{21}}\sqrt{5+\sqrt{21}}\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{4}\sqrt{10+2\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=2\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=2\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=2\left(7-3\right)=2.4=8\)
\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\)
\(=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\)
\(=2\left(25-21\right)=8\)
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)
4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)
4A = \(8\sqrt{2}+1\)
⇒ A = \(\frac{\text{}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)
2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)
4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)
4B = \(12\sqrt{2}+1\)
⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)
3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)
= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}\right)^2\) - 12
= 3 - 1
= 2
4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)
= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)
= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)
= \(\sqrt{7}\) . (7 - 3)
= 4\(\sqrt{7}\)
5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)
= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)
= 10 - 2
= 8
6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)
= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)
= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)
= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30
= 2
7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)
= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)
= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)
= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)
= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)
TICK MÌNH NHA!
Sửa đề: \(D=\left(\sqrt{14}-\sqrt{6}\right)\cdot\left(5+\sqrt{21}\right)\cdot\sqrt{4-\sqrt{7}}\)
Ta có: \(D=\left(\sqrt{14}-\sqrt{6}\right)\cdot\left(5+\sqrt{21}\right)\cdot\sqrt{4-\sqrt{7}}\)
\(=\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\cdot\sqrt{4-\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\)
\(=\left(\sqrt{7}-1\right)\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\)
\(=\left(7-\sqrt{21}-\sqrt{7}+\sqrt{3}\right)\cdot\left(5+\sqrt{21}\right)\)
\(=35+7\sqrt{21}-5\sqrt{21}-21-5\sqrt{7}-7\sqrt{3}+5\sqrt{3}+3\sqrt{7}\)
\(=14+2\sqrt{21}-2\sqrt{7}-2\sqrt{3}\)
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{7-2\sqrt{7}.\sqrt{3}+3}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)=2\left(25-21\right)=2.4=8\)