K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)

\(=5-\sqrt{15}+\sqrt{15}-3=2\)

(Nếu đúng thì click cho mình 1 cái nhe!)

23 tháng 6 2016

mình không hiểu chỗ : \(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\)

\(C=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

20 tháng 5 2022

`C=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}`

`C=(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10})\sqrt{4-\sqrt{15}}`

`C=(\sqrt{10}+\sqrt{6})\sqrt{4-\sqrt{15}}`

`C=\sqrt{(\sqrt{10}+\sqrt{6})^2 .(4-\sqrt{15})}`

`C=\sqrt{(10+6+2\sqrt{60})(4-\sqrt{15})}`

`C=\sqrt{(16+4\sqrt{15})(4-\sqrt{15})}`

`C=\sqrt{64-16\sqrt{15}+16\sqrt{15}-60}`

`C=\sqrt{4}=2`

17 tháng 4 2018

\(=\frac{-40\sqrt{3}+30\sqrt{2}}{-4\sqrt{3}+3\sqrt{2}}=10\)

NV
17 tháng 7 2020

Đề là \(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-3\right)\sqrt{4-\sqrt{15}}\)

Hay \(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\) bạn?

Như bạn ghi thì ko có gì đặc biệt để tính ra kết quả đẹp đâu

15 tháng 6 2017

\(A=\dfrac{10.\sqrt{18}+5\sqrt{3}-15\sqrt{27}}{\sqrt{3}.\left(\sqrt{6}-4\right)}\)

\(A=\dfrac{10.\sqrt{3.6}+5\sqrt{3}-15.\sqrt{3.3^2}}{\sqrt{3}.\left(\sqrt{6}-4\right)}\)

\(A=\dfrac{10.\sqrt{3}.\sqrt{6}+5\sqrt{3}-15.\sqrt{3}.3}{\sqrt{3}\left(\sqrt{6}-4\right)}\)

\(A=\dfrac{\sqrt{3}.\left(10.\sqrt{6}+5-15.3\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}\)

\(A=\dfrac{10.\sqrt{6}+5-45}{\sqrt{6}-4}=\dfrac{10.\sqrt{6}-40}{\sqrt{6}-4}\)

\(A=\dfrac{10.\left(\sqrt{6}-4\right)}{\sqrt{6}-4}=10\)

Vậy \(A=10\)

Chúc bạn học tốt!!!

15 tháng 6 2017

cảm ơn

4 tháng 7 2020

a) \(\sqrt{\left(4-\sqrt{15}\right)^{2^{ }}}+\sqrt{15}\)

=\(\left|4-\sqrt{15}\right|+\sqrt{15}\)

= \(4-\sqrt{15}+\sqrt{15}\) ( vì 4 =\(\sqrt{16}\)\(\sqrt{16}>\sqrt{15}\) )

=4

b)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)

=\(\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\) ( vì \(1< \sqrt{3}< 2\))

= \(2-\sqrt{3}-1+\sqrt{3}\)

=1

a) Ta có: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=\left|4-\sqrt{15}\right|+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}\)

=4

b) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)

\(=2-\sqrt{3}+\sqrt{3}-1\)

\(=1\)

16 tháng 7 2017

bạn ơi đây toán 9 mà