K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Đặt A = \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(2.\)\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

2A = \(\left(3^{32}-1\right)\left(3^{32}+1\right)\)

2A = \(3^{64}-1\)

A = \(\dfrac{3^{64}-1}{2}\)

13 tháng 7 2017

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\dfrac{1}{2}=\left(3^{32}-1\right)\left(3^{32}+1\right).\dfrac{1}{2}\)

\(=\left(3^{64}-1\right).\dfrac{1}{2}=\dfrac{3^{64}-1}{2}\)

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

16 tháng 9 2017

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow-3=5x\)

\(\Rightarrow5x=-3\)

\(\Rightarrow x=-\dfrac{3}{5}\)

Vậy ....

P/s : Làm bừa !

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

1 tháng 8 2017

ucchengaingungnhonhung

4 tháng 10 2017

c)(x2+x)2-2(x2+x)-15

đặt x2+x=a ta có

a2-2a-15

=a2+3a-5a-15

=(a2+3a)-(5a+15)

=a(a+3)-5(a+3)

=(a+3)(a-5)

thay a=x2+x

(x2+x+3)(x2+x-5)

13 tháng 11 2017

\(A=\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}+\dfrac{1}{\left(x+9\right)\left(x+11\right)}\)\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}+\dfrac{1}{x+9}-\dfrac{1}{x+11}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+11}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{x+11}{\left(x+1\right)\left(x+11\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+11\right)}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{x+11-x-1}{\left(x+1\right)\left(x+11\right)}\right)=\dfrac{1}{2}.\dfrac{10}{\left(x+1\right)\left(x+11\right)}=\dfrac{10}{2\left(x+1\right)\left(x+11\right)}\)

20 tháng 11 2016

chịu

21 tháng 8 2016

\(S=-1^2+2^2-3^2+4^2-...+2016^2\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2016-2015\right)\left(2016+2015\right)\)

\(=3+7+..+4031\)

\(=2033136\)

\(A=\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-\frac{1}{15}\times4^{64}\)

\(15A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)

\(15A=\left(4^4-1\right)\left(4^4+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)

\(15A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)

\(15A=\left(4^{32}-1\right)\left(4^{32}+1\right)-4^{64}\left(4^{32}\right)\)

\(15A=4^{64}-1-4^{64}\)

\(A=-\frac{1}{15}\)

 

15 tháng 11 2017

\(A=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)

\(\Leftrightarrow A=\left(25x^2-20x+4\right)-\left(36x^2+12x+1\right)+11\left(x^2-4\right)-\left(48-32x\right)\)

\(\Leftrightarrow A=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)

\(\Leftrightarrow A=-89\)

Vây biểu thức A không phụ thuộc vào biến

15 tháng 11 2017

a,\(A=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)

\(A=(25x^2-20x+4)-\left(36x^2+12x+1\right)+11\left(x^2-4\right)-48+32x\) \(A=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)

\(A=25x^2-36x^2+11x^2-20x-12x+32x+4-1-44-48\)

\(A=-89\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x.