Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
A/ \(\left(10\frac{3}{4}+3\frac{4}{5}\right)-\left(5\frac{3}{4}-1\frac{1}{5}\right)\)
\(=\left(10\frac{3}{4}-5\frac{3}{4}\right)+\left(3\frac{4}{5}+1\frac{1}{5}\right)\)
\(=5+5\)
\(=10\)
chúc bạn học tốt nha
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
\(A=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{100}\right)\)
\(A=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{101}{100}\)
\(A=\frac{101}{2}\)
A = \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{101}{100}\)
A = \(\frac{101}{2}\)
Ta có
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times....\times\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{9}{10}\)
\(=\frac{1}{10}\)
\(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right).\left(1-\frac{3}{13}\right)...\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1.4.7.10...94.97}{4.7.10.13...97.100}=\frac{1}{100}.\)