Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mik :
ĐIỀU KIỆN :* Cạnh hình vuông là ước số chung lớn nhất của 75 và 105.
* Ước số đó là một số tự nhiên.
75 = 25 nhân 3 = 5 nhân 5 nhân 3
105 = 15 nhân 7 = 7 nhân 5 nhân 3
<=> ước số chung của 75 và 105 là 5 nhân 3 = 15
Tấm bìa chữ nhật cắt chiều rộng 75cm ra làm 5 phần, mỗi phần 15cm
cắt chiều dài 105cm ra làm 7 phần, mỗi phần 15cm
diện tích hình chữ nhật = 7875cm²
diện tích hình vuông = 225cm²
Số hình vuông cắt được: 7675 chia 225 = 35 tấm
Đáp số:
Cắt được 35 bìa hình vuông, mỗi cạnh của hình vuông là 15 cm
'' CHÚC BẠN HỌC TỐT ''
Hình lăng trụ đứng tạo lập được là:
Độ dài 2 cạnh góc vuông của đáy là: 10 cm và 15 cm
Chiều cao của lăng trụ là: 16 cm
Gọi độ dài cạnh hình vuông bị cắt đi là x (cm). Vậy chiều cao của hình hộp chữ nhật là x (cm),
Chiều dài tấm bìa sau khi cắt hay chiều dài hình hộp chữ nhật là: \(30 - 2x\) (cm).
Chiều rộng tấm bìa sau khi cắt hay chiều rộng hình hộp chữ nhật là: \(20 - 2x\)(cm).
Thể tích hình hộp chữ nhật là:
\(\begin{array}{l}(30 - 2x).(20 - 2x).x \\= (30 - 2x)(20x - 2{x^2})\\ = 30(20x - 2{x^2}) - 2x(20x - 2{x^2})\\ = 600x - 60{x^2} - 40{x^2} + 4{x^3}\\ = 4{x^3} - 100{x^2} + 600x (cm^3)\end{array}\)
Vậy đa thức biểu diễn thể tích của hình hộp chữ nhật được tạo thành theo độ dài cạnh của hình vuông bị cắt đi là \(4{x^3} - 100{x^2} + 600x\).
Cạnh hình vuông là:
240 : 4 = 60 cm
Diện tích hình vuông là:
60 x 60 = 3600 cm2
Chiều cao hình tam giác là:
3600 x 2 : 90 = 80 cm
1.Gọi a,b,c là độ dài 3 cạnh tam giác vuông ABC, c là cạnh huyền.
Ta có \(a^2+b^2=c^2;a,b,c\in\)N* , diện tích tam giác ABC là \(S=\frac{ab}{2}\)
Trước hết ta chứng minh ab chia hết cho 12.
+ Chứng minh \(ab⋮3\): Nếu cả a và b đồng thời không chia hết cho 3 thì \(a^2+b^2\)chia 3 dư 2. Suy ra số chính phương \(c^2\)chia 3 dư 2, vô lí.
+ Chứng minh \(ab⋮4\): - Nếu a,b chẵn thì \(ab⋮4\)
- Nếu trong hai số a,b có số lẻ, chẳng hạn a lẻ.
Lúc đó c lẻ. Vì nếu c chẵn thì \(c^2⋮4\), trong lúc \(a^2+b^2\)không thể chia hết cho 4. Đặt \(a=2k+1,c=2h+1,k,h\in N\)
Ta có: \(b^2=\left(2h+1\right)^2-\left(2k+1\right)^2=4\left(h-k\right)\left(h+k+1\right)\)
\(=4\left(h-k\right)\left(h-k+1\right)+8k\left(h-k\right)⋮8\)
Suy ra \(b⋮4\). Nếu ta chia cạnh AB (chẳng hạn) thành 6 phần bằng nhau, nối các điểm chia với C thì tam giác ABC được chia thành 6 tam giác, mỗi tam giác có diện tích bằng \(\frac{ab}{2}\)là một số nguyên.
2. Với \(a\in Z,\)ta có: \(P\left(a\right)=a^5-3a^4+6a^3-3a^2+9a-6\)
Nếu a chia hết cho 3 thì tất cả các số hạng trong P(a) đều chia hết cho 9, trừ số hạng cho 6, do đó P(a) không chia hết cho 9, nghĩa là \(P\left(a\right)\ne0\).
Nếu a không chia hết cho 3 thì \(a^5\)không chia hết cho 3 trong khi tất cả các số hạng khác trong P(a) đều chia hết cho 3, do đó P(a) không chia hết cho 3, nghĩa là \(P\left(a\right)\ne0\). Vậy \(P\left(a\right)\ne0\)với mọi \(a\in Z\).
diện tích hai phần bìa hình vuông lần lượt là a2 và b2