Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M G d2 d1
Gọi G là giao điểm của 2 đường thẳng \(d_1,d_2\). Khi đó G(1;1) và G là trọng tâm của tam giác ABC. Gọi D là điểm đối xứng với A qua G suy ra tứ giác BGCD là một hình bình hành và D(-4;-1)
Gọi b là đường thẳng đi qua D và song song với \(d_1\)
Khi đó b có phương trình \(5\left(x+4\right)+3\left(y+1\right)=0\)
hay \(5x+3y+23=0\)
đường thẳng b cắt \(d_2\) tại điểm C có tọa độ là nghiệm của hệ :
\(\begin{cases}5x+3y+23=0\\3x+8y-11=4\end{cases}\)
Giải hệ thu được (x;y)=(-7;4)
Do đó C(-7;4)
Tương tự c là đường thẳng đi qua D và song song với \(d_2\) cắt \(d_1\) tại B(4;-4)
Khi đó \(\overrightarrow{BC}=\left(-11;8\right)\)
Suy ra BC có vec tơ pháp tuyến \(\overrightarrow{n}=\left(8;11\right)\), do đó có phương trình \(8\left(x-4\right)+11\left(y+4\right)=0\) hay \(8x+11y+12=0\)
Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)
Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)
Do đó nếu đường thẳng d tạo với \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của \(\Delta_1;\Delta_2\)
Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng \(\Delta_1\) một góc \(\frac{\pi}{4}\).
Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :
\(ax+by-a-b=0\)
Do góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên
\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)
Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)
Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)
AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)
\(\Rightarrow A\left(-2;3\right)\)
AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)
\(\Rightarrow B\left(4;5\right)\)
*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)
Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)
BC: \(7x-3y-13=0\)
*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)
Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)
AC: \(5x+3y+1=0\)
lời giải
\(\Delta_1\) //\(\Delta_2\)
Vậy \(\Delta_3\) cách đều phải //\(\Delta_2\) và \(\Delta_1\) và giữa \(\Delta_1\&\Delta_2\)
M(0,b)
x=0 =>\(\left\{{}\begin{matrix}\Delta_1=y=1\\\Delta_2\Rightarrow y=-\dfrac{7}{3}\end{matrix}\right.\)
=> b=\(\dfrac{\dfrac{3}{3}-\dfrac{7}{3}}{2}=\dfrac{-2}{3}\)
\(M=\left(0,-\dfrac{2}{3}\right)\)
\(\Delta_3\) phải đi qua M
=>\(\Delta_3\)=5x+3(y+2/3)=5x+3y+2=0
Đáp số: \(\Delta_3\)=5x+3y+2=0
A B C d2 d1
Vì \(d_1\) là đường cao kẻ từ B nên đường thẳng AC vuông góc với \(d_1\)
Đường thẳng \(d_1\) có vec tơ pháp tuyến \(\overrightarrow{n}=\left(5;3\right)\) do đó nhận \(\overrightarrow{u}=\left(3;-5\right)\) làm vec tơ chỉ phương.
Vậy đường thẳng AC đi qua A(-4;5), với vec tơ pháp tuyến \(\overrightarrow{u}=\left(3;-5\right)\), do dó có phương trình \(3\left(x+4\right)-5\left(y-5\right)=0\) hay \(3x-5y+37=0\)
Đường thẳng AC cắt \(d_2\) tại C có tọa độ của hệ :
\(\begin{cases}3x+8y+11=0\\3x-5y+37=0\end{cases}\)
Giải hệ thu được (x;y)=(-9;2) do đó C(-9;2)
Tương tự như trên cũng được phương trình tổng quát AB là \(8x-3y+47=0\) và \(B\left(-3;\frac{23}{3}\right)\)
Từ đó \(\overrightarrow{BC}=\left(-6;-\frac{17}{3}\right)=-\frac{1}{3}\left(18;17\right)\)
Suy ra đường thẳng BC có vec tơ chỉ phương \(\overrightarrow{u}=\left(18;17\right)\) do đó nhận vec tơ \(\overrightarrow{n}=\left(17;-18\right)\) làm vec tơ pháp tuyến
Vậy BC có phương trình tổng quát \(17\left(x+9\right)-18\left(y-2\right)=0\) hay \(17x-18y+189=0\)
M N d d d1 d2 I
a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)
Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:
\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)
<=> 16y2-24y+9+9y2-9+12y-63y=0
<=>25y2-75y=0
<=> y=0=>x=1
hoặc y=3=>x=-3
Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)
b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)
=>tọa độ tâm I(0,5;3,5)
Gọi d1,d2 là các tiếp tuyến tại M và N
VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1
=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)
hay d1: x-7y-1=0
Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:
d2:7x+y+18=0
c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
=>tọa độ giao điểm là (-2,5;-0,5)
\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)
(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)
d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)
Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến
Suy ra \(\left(Q\right):x-2z+12=0\)
a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
Đáp án A
Do A và B lần lượt nằm trên trục Ox, Oy nên tọa độ của chứng có dạng :
A( xA ; 0) và B ( 0 ; yB)
Ta có M là trung điểm của AB nên :
Suy ra phương trình đường thẳng AB là :
Hay 3x- 5y- 30 =0