K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

28 tháng 6 2017

Phép trừ các phân thức đại số

7 tháng 8 2018

\(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)

\(=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}\)

\(=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

23 tháng 6 2020

Biến thì khác nhau nhưng quan trọng là cách làm :)) 

Vào TKHĐ của tớ để xem hình ảnh nhé, dài ngại chả muốn viết :V

22 tháng 7 2023

\(a,\dfrac{x}{x+3}+\dfrac{2-x}{x+3}\\ =\dfrac{x+2-x}{x+3}\\ =\dfrac{2}{x+3}\\b,\dfrac{x^2y}{x-y}-\dfrac{xy^2}{x-y}\\ =\dfrac{x^2y-xy^2}{x-y}\\ =\dfrac{xy\left(x-y\right)}{x-y}\\ =xy\\ c,\dfrac{2x}{2x-y}+\dfrac{y}{y-2x}\\=\dfrac{2x}{2x-y}-\dfrac{y}{2x-y}\\ =\dfrac{2x-y}{2x-y}\\ =1 \)

`a, x/(x+3) + (2-x)/(x+3) = (x+2-x)/(x+3) = 2/(x+3)`

`b, (x^2y)/(x-y) - (xy^2)/(x-y) = (x^2y-xy^2)/(x-y) = (xy(x-y))/(x-y)= xy`

`c, (2x)/(2x-y) - (y)/(2x-y)`

`= (2x-y)/(2x-y) = 1`

8 tháng 11 2017

\(\text{a) }\dfrac{x^2+2}{x^3-1}+\dfrac{x}{x^2+x+1}+\dfrac{1}{1-x}\\ =\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x}{x^2+x+1}-\dfrac{1}{x-1}\\ =\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\dfrac{\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{x^2+2+x\left(x-1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{x^2+2+x^2-x-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{x^2-2x+1}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x-1\right)^2}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{x-1}{x^2+x+1}\\ \)

\(\text{b) }\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\\ =\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{x\left(y-x\right)}\\ =\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\\ =\dfrac{x^2}{y\left(x-y\right)x}-\dfrac{\left(2x-y\right)y}{x\left(x-y\right)y}\\ =\dfrac{x^2-\left(2x-y\right)y}{xy\left(x-y\right)}\\ =\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\\ =\dfrac{\left(x-y\right)^2}{xy\left(x-y\right)}\\ =\dfrac{x-y}{xy}\)