Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Diện tích hình phẳng giới hạn bởi các đường y = l x , y = 0 , x = 0 , x = 2 được tính theo công thức S = ∫ 0 2 l x d x = ∫ 0 2 l x d x
a.có 18 HLP nhỏ có mặt được sơn xanh,1 HLP nhỏ có 1 mặt sơn xanh
b.có 24 HLP nhỏ được sơn đỏ ,có 12 HLP nhỏ đc sơn đỏ 2 mặt,12 HLP nhỏ đc sơn đỏ 1 mặt
c. có 3 HLP nhỏ không đc sơn mặt nào
tích mình nhé :D thanks
1, \(3^{x-1}-5.3^{x-1}=162\Rightarrow-4.3^{x-1}=162\)vì \(-4.3^{x-1}<0\) mà 162<0 suy ra pt vô nghiệm
3, \(2^{x+1}.3^4=12^x\Rightarrow2^x.2.3^4=12^x\Rightarrow2.3^4=12^x:2^x=6^x\Rightarrow2^x.3^x=2.3^4\Rightarrow\begin{cases}x=1\\x=3\end{cases}\) (vô lí) pt vô nghiệm
a) ĐK: x-1 khác 0 và x+1 khác 0
<=> x khác 1 và x khác -1
b) ĐK: x-2 khác 0
<=> x khác 2
a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)
\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(A=\frac{x+1}{x+\sqrt{x}+1}\)
Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)
\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)
\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)
\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)
b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)
Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)
Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)
Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).
Câu 1.
a). 2A = 8 + 2 3 + 2 4 + . . . + 2 21.
=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20). = 2 21.
b). (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100 = 5750
=> ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750
=> 101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
Câu 1. a). 2A = 8 + 2 3 + 2 4 + . . . + 2 21.
=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20). = 2 21.
b). (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100 = 5750
=> ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750
=> 101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
Câu 1 :
Đk: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)
\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)
với x= 5 thoản mãn điều kiện, x=145 loại
Vậy \(S=\left\{5\right\}\)
a, ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x^2-1}-\dfrac{2x}{x^2-1}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=1\left(KTMĐK\right)\end{matrix}\right.\)
Vậy...........
b, ĐKXĐ: \(x\ne0\) ; \(x\ne2\)
\(\Leftrightarrow\dfrac{x^2-4}{x\left(x-2\right)}-\dfrac{2x+13}{x\left(x-2\right)}=0\)
\(\Rightarrow x^2-4-2x-13=0\)
\(\Leftrightarrow x^2-2x-17=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\left(TMĐK\right)}}\)
Vậy.............
mk làm hơi tắt nha bn
chắc là xét khoảng