K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Theo bài ra ta cần tìm:

n[X \ (A ∪ B)] = n(X) − n(A ∪ B) = n(X) − n(A) − n(B) = n(X) − n(A) − n(B)

Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

17 tháng 11 2018

Đáp án A

Số cách chọn 1 người trong 20 người làm trưởng đoàn là:  C 20 1  cách.

Số cách chọn 1  người trong 19 người còn lại làm phó đoàn là:  C 19 1  cách.

Số cách chọn 1 người trong 18 người còn lại làm thư kí là:  C 18 1  cách.

Số cách chọn 3 người trong 17 người còn lại làm ủy viên là: C 17 3  cách.

Vậy số cách chọn đoàn đại biểu là C 20 1 . C 19 1 . C 18 1 . C 17 3 = 4651200 .

NV
22 tháng 12 2022

a.

Chọn 1 nam từ 9 nam có 9 cách

Chọn 1 nữ từ 3 nữ có 3 cách

\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ

b.

Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách

Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách

\(\Rightarrow C_8^2.C_4^2\) cách lập

c.

Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)

\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách

18 tháng 5 2017

Tổ hợp - xác suất

NV
8 tháng 3 2022

a. Chọn 3 người bất kì từ 100 người, có \(C_{100}^3\) cách

b. Chọn 2 nam từ 60 nam và 1 nữ từ 40 nữ, có \(C_{60}^2.C_{40}^1\) cách

c. Do anh A và chị B không đi nên chỉ chọn 3 người từ 98 người còn lại, có \(C_{98}^3\) cách

d. Chọn anh A và chị B đi chung (nghĩa là chỉ cần chọn 1 người từ 98 người còn lại): \(C_{98}^1\) cách

\(\Rightarrow\) Số cách để anh A và chị B không đi chung là: \(C_{100}^3-C_{98}^1\)

3 tháng 4 2024

a) Để tính số đoàn đại biểu 3 người có thể thành lập nếu không ai từ chối tham gia, ta sử dụng công thức tổ hợp. Tổng số cách chọn 3 người từ 100 người là:

C3100=100!3!(1003)!=161700�1003=100!3!(100−3)!=161700

b) Để tính số đoàn có thể thành lập nếu có 2 nam và 1 nữ, ta sẽ tính số cách chọn 2 nam từ 60 nam và chọn 1 nữ từ 40 nữ, sau đó nhân kết quả lại với nhau:

10 tháng 10 2017

Đáp án A

21 tháng 4 2018


1 tháng 10 2019

Đáp án C

5 tháng 10 2022

đáp án C

3 tháng 5 2018

Chọn B

Số phần tử của không gian mẫu akr40DDpFOuH.png

Gọi A là biến cố: “chọn được 4 đại biểu để trong đó mỗi nước đều có 1 đại biểu và có cả đại biểu

nam và đại biểu nữ”

Số cách chọn 4 người đủ các nước tức là có một nước có 2 người, hai nước còn lại, mỗi nước 1 người là:.

Số cách chọn 4 người đủ các nước và toàn đại biểu nam là:

Số cách chọn 4 người đủ các nước và toàn đại biểu nữ là:

Số phần tử của A là n(A) = 2499- 12 - 550 = 1937

Xác suất của biến cố A: 

7 tháng 1 2019

Chọn D

Số phần tử của không gian mẫu là: .

Gọi A là biến cố “chọn được 4 đại biểu sao cho mỗi Quốc gia đều có ít nhất 1 đại biểu và có cả đại biểu nam và nữ.”

Trường hợp 1: có 2  đại biểu Việt Nam, 1 đại biểu Mỹ, 1 đại biểu Anh.

Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 1 là: cách chọn.

Trường hợp 2: Có 1  đại biểu Việt Nam, 2 đại biểu Mỹ,1  đại biểu Anh.

Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 2 là:

Trường hợp 3: Có 1 đại biểu Việt Nam, 1 đại biểu Mỹ, 2 đại biểu Anh.

Số cách chọn ra 4 đại biểu có cả đại biểu nam và đại biểu nữ thỏa mãn trường hợp 3 là: .

Nên tổng số cách chọn thỏa mãn yêu cầu là: 581 + 678 + 678 = 1937.

 

Vậy xác suất của biến cố A là: .