Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Gọi a là số tổ cần chia ( a thuộc N*)
24 chia hết cho a => a thuộc Ư(24) và a nhiều nhất
108 chia hết cho a => a thuộc Ư(108) và a nhiều nhất
Vậy a là ƯCLN (24,108)
Mà ƯCLN (24,108)=12 => a=12
Khi đó mỗi tổ có:
-Số bác sĩ: 24 : 12=2
- Số y tá: 108:12= 9
a, có vì số lẻ - số lẻ = số chẵn
b, có vì lẻ + lẻ - chẵn = chẵn
c, không vì 24a là số chẵn 10b cũng là số chẵn
Câu 1 :
b) [( 3x + 1 )3] = 150 => ( 3x + 1 )3 = 1 => 3x + 1 = 1 => 3x = 0 => x = 0
Câu 2: Theo đề bài thì \(a\equiv b\left(mod7\right)\Rightarrow a-b\equiv0\left(mod7\right)\)
Hay a - b chia hết cho 7 (đpcm)
Nếu cách trên sai thì lấy cách sau chữa liền,thầy khỏi la:v
Do a chia hết cho 7,đặt a = 7k. Do b chia hết cho 7, đặt b = 7h
Khi đó \(a-b=7\left(k-h\right)⋮7\) (đpcm)
Hai cách cùng sai thì mình chịu. (chắc ko có cái này đâu:v)
1)
\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3
=> 3.7.(n+1)n chia hết cho 6
=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6
2)
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)
Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
12n chia hết cho 6
=>\(n^3-13n\) chia hết cho 6
3)
\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)
\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3
Ta có :
\(B=3+3^2+3^3+.....+3^{2015}\)
\(\Leftrightarrow3B=3^2+3^3+.........+3^{2015}+3^{2016}\)
\(\Leftrightarrow3B-B=\left(3^2+3^3+.....+3^{2016}\right)-\left(3+3^2+......+3^{2015}\right)\)
\(\Leftrightarrow2B=3^{2016}-3\)
\(\Leftrightarrow2B+3=3^{2016}\)
Lại có : \(2B+3=3^x\)
\(\Leftrightarrow3^{2016}=3^x\Leftrightarrow x=2016\)
Vậy...
Có vì 48 là số chẵn và \(11\cdot9\cdot5\cdot2\) cũng là số chẵn