Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi phương trình ax2 + bx + c = 0 có a và c trái dấu thì ac < 0, suy ra –ac > 0; hơn nữa b2 ≥ 0. Do đó ∆ = b2 – 4ac > 0. Vậy phương trình có hai nghiệm phân biệt.
Áp dụng:
a) Phương trình 15x2 + 4x – 2005 = 0 có a = 15, c = -2005 trái dấu nhau nên phương trình có hai nghiệm phân biệt.
b) Phương trình x2 - √7x + 1890 = 0 có a = và c = 1890 trái dấu nhau nên phương trình có hai nghiệm phân biệt.
a) Phương trình 15 x 2 + 4 x – 2005 = 0 có a = 15; c = -2005 trái dấu
⇒ Phương trình có hai nghiệm phân biệt.
b) Phương trình có ; c = 1890 trái dấu
⇒ Phương trình có hai nghiệm phân biệt.
Phương trình có ; c = 1890 trái dấu
⇒ Phương trình có hai nghiệm phân biệt.
Có \(\Delta=9-8=1>0\)
Nên pt luôn có 2 nghiệm
Theo hệ thức Vi-ét có
\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)
*Lập pt bậc 2 ẩn y
Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)
\(=3+\frac{3}{2}\)
\(=\frac{9}{2}\)
\(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)
\(=x_1x_2+1+1+\frac{1}{x_1x_2}\)
\(=2+2+\frac{1}{2}\)
\(=\frac{9}{2}\)
Vậy pt cần lập có dạng \(y^2-Sy+P=0\)
\(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)
\(\Leftrightarrow2y^2-9y+9=0\)
Phương trình 15x2 + 4x – 2005 = 0 có a = 15; c = -2005 trái dấu
⇒ Phương trình có hai nghiệm phân biệt.