Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
electrong chuyển từ trạng thái dừng n = 3 xuống trạng thái dừng n =2 => nguyên tử hiđrô đã phát ra một năng lượng đúng bằng
\(\Delta E = E_{cao}-E_{thap}= -\frac{13,6}{3^2}-(-\frac{13,6}{2^2})= 13,6.(\frac{1}{4}-\frac{1}{9})= 1,89 eV= 1,89.1,6.10^{-19}V.\)
Mà \(\Delta E = \frac{hc}{\lambda}=> \lambda = \frac{hc}{\Delta E}= \frac{6,625.10^{-34}.3.10^8}{1,89.1,6.10^{-19}}= 6,57.10^{-7}m = 0,657 \mu m.\)
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
Khi electron chuyển từ L (n = 2) sang K (n = 1) phát ra phô tôn có bước sóng λ21 thỏa mãn:
\(\frac{hc}{\lambda_{21}}= E_2-E_1,(1)\)
Tương tự
\(\frac{hc}{\lambda_{32}}= E_3-E_2,(2)\)
\(\frac{hc}{\lambda_{31}}= E_3-E_1,(3)\)
Cộng (2) cho (1), so sánh với (3):
\(\frac{hc}{\lambda_{21}}+\frac{hc}{\lambda_{32}}= \frac{hc}{\lambda_{31}}\)=> \(\frac{1}{\lambda_{31}}=\frac{1}{\lambda_{21}}+\frac{1}{\lambda_{32}} \)
=> \(\lambda_{31}= \frac{\lambda_{32}\lambda_{21}}{\lambda_{32}+\lambda_{21}}.\)
Năng lượng của nguyên tử ở trạng thái dừng \(n\):
\(E_n =-\frac{13,6}{n^2}.(eV)\)
Electron nhảy từ P (n=6) về K (n=1): \(hf_1 = E_6-E_1.(1)\)
Electron nhảy từ P (n=6) về L (n=2): \(hf_2 = E_6-E_2.(2)\)
Electron nhảy từ L (n=2) về K (n=1): \(hf_6 = E_2-E_1.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta được : \(hf_1 -hf_2 = hf_3\)
=> \(f_3=f_1 -f_2.\)
\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)
Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV.
Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.
\(E_1 = -13,6eV\), \(E_3 = -1,51 eV\)
\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)
Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)
Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.
Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn
\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)
Khi electron nhảy từ trạng thái có năng lượng En sang trạng thái có mức năng lượng nhỏ hơn Em thì nguyên tử phát ra bức xạ thỏa mãn
\(hf = E_n-E_m \)
=> \(h\frac{c}{\lambda} = E_m-E_n \)
=> \(\lambda=\frac{hc}{E_m-E_n} =\frac{6,625.10^{-34}.3.10^8}{1,9.1,6.10^{-19}}=6,54.10^{-7}m= 0,654.10^{-6}m.\)
Năng lượng ion hóa là năng lượng tối thiểu để có thể tách một electron ra khỏi nguyên tử để trở thành electron tự do.
Khi nguyên tử hiđrô hấp thụ năng lượng bằng 13,6 eV thì năng lượng của nguyên tử lúc này là 0 eV ứng với việc nó có thể phát ra một phôtôn có bước sóng ngắn nhất thỏa mãn
\(\frac{hc}{\lambda}= E_0-E_1 = 0-(-13,6)= 13,6 eV.\)
=> \(\lambda _ {min}= \frac{6,625.10^{-34}.3.10^8}{13,6.1,6.10^{-19}}= 9,13.10^{-8}m= 0,0913 \mu m..\)
Năng lượng ion hóa là năng lượng tối thiểu để có thể tách một electron ra khỏi nguyên tử để trở thành electron tự do.
Khi nguyên tử hiđrô hấp thụ năng lượng bằng 13,6 eV thì năng lượng của nguyên tử lúc này là 0 eV ứng với việc nó có thể phát ra một phôtôn có bước sóng ngắn nhất thỏa mãn
hc/λ=E0−E1=0−(−13,6)=13,6eV.
=> λmin=6,625.10−34.3.10813,6.1,6.10−19=9,13.10−8m=0,0913μm..
Chọn đáp án B