Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tần số: f = 2 Hz.
Tốc độ góc: \(\omega = 2\pi f = 2 \pi .2 =4 \pi \) (rad/s)
Tốc độ dài: \(v = \omega R = 4 \pi .10 = 40 \pi\) (cm/s)
f=2Hz\(\Rightarrow\)\(\omega\)=4\(\pi\)\(\Rightarrow\)v=R\(\omega\)=10.4\(\pi\)=40\(\pi\)(cm/s)
Tốc độ góc \(\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{20}{0,2}}=10\left(rad/s\right)\)
Lại có \(A=\sqrt{\frac{v^2}{\omega^2}+\frac{a^2}{\omega^4}}=\sqrt{\frac{20^2}{10^2}+\frac{\left(2\sqrt{3}.100\right)^2}{10^4}}=4\left(cm\right)\)
\(\overrightarrow {g'} =\overrightarrow g - \overrightarrow a \)
Ô tô chuyển động nằm ngang => \(\overrightarrow a \bot \overrightarrow g\)
=> \(g' = \sqrt{g^2+ a^2}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)
\(T' = 2\pi \sqrt{\frac{l}{g'}}\)
=> \(\frac{T}{T'} = \sqrt{\frac{g'}{g}} = \sqrt{\frac{\sqrt{g^2+a^2}}{g}} = 1,01\)
=> \(T'= \frac{2}{1,01} = 1,98 s.\)
cho mình hỏi: Nếu trong trường hợp ôtô chuyển động thẳng chậm dần đều thì phải làm ntn ?
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
Chọn C.
Tốc độ góc của mọi điểm trên đĩa là như nhau: