Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ thức Anh -xtanh trong hiện tượng quang điện
\(hf = A_1+W_{đ1}.(1)\)
\(hf = A_2+W_{đ2}.(2)\)
Ta có \(A_1 = \frac{hc}{\lambda_{01}}; A_2 = \frac{hc}{\lambda_{02}}\)
\( \lambda_{02} = 2\lambda_{01}=> A_1 = 2A_2. \)
Trừ vế với vế của phương trình (1) cho phương trình (2) ta có
=> \(0= A_1-A_2+W_{đ 1}-W_{đ 2}.\)
=> \(W_{đ2}=( A_1-A_2)+W_{đ1} = A_2+W_{đ1}\)
Mà \(A_2 >0\) => \(W_{đ2} > W_{đ1}\).
Công thức Anh-xtanh cho hiện tượng quang điện ngoài
\(hf =A + \frac{1}{2} mv_{0max}^2= A+ W_{đmax}\)
=> \(\frac{hc}{\lambda_1} =\frac{hc}{\lambda_0}+W _{đmax1} \)
=> \(W_{đmax1} = \frac{hc}{\lambda_1} - \frac{hc}{\lambda_0} = 3,011.10^{-19}J.\)
Với công thoát: \(A = \frac{hc}{\lambda_0} = 3.011.10^{-19}J ; \frac{hc}{\lambda_1} = 6,023.10^{-19}J.\)
Mà \(v_{0max2} = \sqrt{2}v_{0max2} => W_{dmax1} = 2W_{dmax2} \)
=> \(\frac{hc}{\lambda_2} =\frac{hc}{\lambda_0}+W _{đmax2} = 3,011.10^{-19} + 6,023.10^{-19} = 9,035.10^{-19}J.\)
=> \(\lambda_2 =\frac{hc}{ \frac{hc}{\lambda_0} +W_{dmax2}} = \frac{6,625.10^{-34}.3.10^8}{9,035.10^{-19}} = 2,2.10^{-7}m = 0,22 \mu m.\)
Chọn đáp án.D. \(0,22\mu m.\)
Ý C và D là giống nhau về bản chất (năng lượng electron thu được bằng năng lượng photon chiếu đến)
Bạn lưu ý rằng electron có thể nằm trên hoặc dưới bề mặt kim loại, nếu nó nằm dưới bề mặt kim loại thì nó cần năng lượng để đi lên trên và bứt ra khỏi bề mặt kim loại đó. Năng lượng e bị mất chính là tổng của hai năng lượng này.
Do đó, để electron có động năng cực đại thì nó phải nằm ở bề mặt kim loại, khi đó năng lượng mất đi là nhỏ nhất.
Từ hệ thức Anh-xtanh ta có:
_ Với bức xạ \(\lambda_1:\)\(\frac{hc}{\lambda}=A+\frac{1}{2}mv^2_1\left(1\right)\)
_Với bức xạ \(\lambda_2:\)\(\frac{hc}{\lambda_2}=A+\frac{1}{2}mv^2_2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow m_e=\frac{2hc}{v^1_2-v^2_2}\left(\frac{1}{\lambda_1}-\frac{1}{\lambda_2}\right)\)
ừ hệ thức Anh-xtanh ta có:
_ Với bức xạ λ1:hcλ=A+12mv21(1)λ1:hcλ=A+12mv12(1)
_Với bức xạ λ2:hcλ2=A+12mv22(2)λ2:hcλ2=A+12mv22(2)
Từ (1) và (2) ⇒me=2hcv21−v22(1λ1−1λ2)⇒me=2hcv12−v22(1λ1−1λ2).
câu hỏi của bn có ở đây nhá Câu hỏi của HOC24 - Học và thi online với HOC24
Vì có điện trở thuần nên dao động trong mạch tắt dần do tỏa nhiệt ở điện trở. Để duy trì dao động điều hòa phải bổ sung cho mạch một năng lượng có công suất đủ bì vào phần năng lượng hao phí do tỏa nhiệt (hiệu ứng J un) trên điện trở, phần này có công suất là: \(\Delta P=I^2.R\)
Khi cùng cấp năng lượng đó, ta có: \(\frac{1}{2}CU^2_0=\frac{1}{2}LI^2_0\)
Mà: \(^{U=\frac{U_0}{\sqrt{2}}}_{I=I_{\frac{0}{\sqrt{2}}}}\)} \(\rightarrow I^2=\frac{C}{L}.U^2\)
\(P=I^2R=\frac{CR}{L}U^2=\frac{CRU^2_0}{2L}\)
\(\Rightarrow P=137\mu W\)
chọn B
Giới hạn quang điện \(\lambda_0=\frac{hc}{A}=0,6\mu m\)
Trong ánh sáng trắng có các bước sóng \(\lambda\le\lambda_0\) nên có hiện tượng quang điện xảy ra .
+ \(v_{0max}\) ứng với \(\lambda_{min}=0,4\mu m\):
Từ \(\frac{hc}{\lambda_{min}}=A+\frac{1}{2}mv^2_{0max}\Rightarrow v_{0max}=\)\(\sqrt{\frac{2\left(\frac{hc}{\lambda_{min}}-A\right)}{m}}\)
\(\Leftrightarrow v_{0max}=\sqrt{\frac{\frac{2\left(6,625.10^{-34}.3.10^8\right)}{0,4.10^{-6}}-3,31.10^{-19}}{9,1.10^{-31}}}=\)\(0,6.10^6\left(m\text{/}s\right)\)
Chọn đáp án A