Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{\left(5^2.6^{11}.16^2+6^2.12^6.15^2\right).10}{2.6^{12}.10^4-81^2.960^3}\)
\(A=\frac{\left(5^2.2^{11}.3^{11}.2^8+2^2.3^2.3^3.2^{12}.3^2.5^2\right).10}{2.2^{12}.3^{12}.2^4.5^4-9^4.2^{18}.3^3.5^3}\)
\(A=\frac{5^2.2^{11}.3^{11}.2^8.2.5+2^2.3^2.2^{12}.3^25^2.2.5}{2^{15}.\left(2^2.3^{12}.5^4-9^4.2^3.3^3.5^3\right)}\)
\(A=\frac{2^{15}\left(5^3.2^5.3^{11}+3^4.5^3\right)}{2^{15}.\left(2^2.3^{12}.5^4-9^4.2^3.3^3.5^3\right)}\)
\(A=\frac{5^3.2^5.3^{11}+3^4.5^3}{2^2.3^{12}.5^4-9^4.2^3.3^3.5^3}\)
\(A=\frac{5^3\left(2^5.3^{11}+3^4\right)}{5^3\left(2^2.3^{12}.5-9^4.2^3.3^3\right)}\)\(A=\frac{2^5.3^{11}+3^4}{2^2.3^{12}.5-9^4.2^3.3^3}\)
\(A=\frac{3^4.\left(2^5.3^8.5+1\right)}{3^4\left(2^2.3^8.5-3^4.2^3.3^3\right)}\)
\(A=\frac{2^5.3^8.5+1}{2^2.3^8.5-3^4.2^3.3^3}\)
Cậu phân tích từ từ
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
1) \(\frac{3^{10}+6^2}{5\cdot3^8+20}=\frac{3^{10}+3^2\cdot2^2}{5\cdot3^8+5\cdot2^2}=\frac{3^2\left(3^8+2^2\right)}{5\left(3^8+2^2\right)}=\frac{9}{5}\)
2) \(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{28^{15}\cdot3^{17}}{28^{16}\cdot3^{16}}=\frac{3}{28}\)
Câu 8:
Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\pm\frac{18}{5}\)
+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\pm\frac{24}{5}\)
Vậy bộ số \(\left(x;y\right)\) là \(\left(\frac{18}{5};\frac{24}{5}\right);\left(\frac{-18}{5};\frac{-24}{5}\right)\)
cho 1+5+5^2+5^3+...+5^100 =A
ta có A = 1+5+5^2+5^3+...+5^100
=>5A =5 +5^2+5^3+5^4+...+5^101
=>5A-A=(5+5^2+5^3+...+5^101)-(1+5+5^2+5^3+...+5^100)
=>4A=5^101-1
=>A =(5^101-1)/4
vậy 1+5+5^2+5^3+...+5^100=(5^101-1)/4
5A=5+5^2+5^3+...+5^100+5^101
5A-A=[5+5^2+...+5^101]-[1+5+5^2+...+5^100]
4A=1+5^101
VẬY A=\(\frac{1+5^{101}}{4}\)NOTE ĐÚNG NHA
16 + 83 + 84 + 7 = 190