K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(K=\dfrac{\sqrt{x}-11-3x-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x-8\sqrt{x}-11-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x-9\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

b: Để K=1/2 thì \(\dfrac{-5x-9\sqrt{x}-8}{x+2\sqrt{x}-3}=\dfrac{1}{2}\)

=>\(-10x-18\sqrt{x}-16=x+2\sqrt{x}-3\)

=>-11x-20căn x+13=0

=>\(x=\left(\dfrac{-10+9\sqrt{3}}{11}\right)^2\)

6 tháng 12 2018

a ,rút gọn P (dkxd x\(\ge0,x\ne0\)

P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x-1}\right)}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

..............=\(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

a: ĐKXĐ: x>=0; x<>1

b: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

c: Để K=1/2 thì \(\dfrac{-5x+5\sqrt{x}-8}{x+2\sqrt{x}-3}=\dfrac{1}{2}\)

=>\(-10x+10\sqrt{x}-16-x-2\sqrt{x}+3=0\)

=>\(-11x+8\sqrt{x}-13=0\)

hay \(x\in\varnothing\)

13 tháng 7 2018

\(ĐKXĐ:x\ge0,x\ne1\)

\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)

\(K=\left[\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x+2\sqrt{x}-\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\right]\)

\(K=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b.

Ta có: \(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=24+\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=24+\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=24+\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{5}+1}=24+1=25\)

Thay \(x=25\) vào \(K\) ta được:

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}=\dfrac{\sqrt{25}+1}{2.\sqrt{25}}=\dfrac{6}{10}=\dfrac{3}{5}\)

c.

Ta có: \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\ge1\)

\(\Rightarrow\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}}{8\sqrt{x}+8}-\dfrac{x+2\sqrt{x}+1}{8\sqrt{x}+8}-\dfrac{8\sqrt{x}+8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{6\sqrt{x}-x-9}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{-\left(\sqrt{x}-3\right)^2}{8\sqrt{x}+8}\ge0\)

Ta có: \(\left\{{}\begin{matrix}-\left(\sqrt{x}-3\right)^2\le0\\8\sqrt{x}+8\ge0\end{matrix}\right.\)

⇒ Không có \(x\) thỏa mãn

30 tháng 11 2022

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x-5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

10 tháng 8 2018

\(a.K=\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right):\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)+6\sqrt{x}-9\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2\left(1-2\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{2\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}{3\sqrt{x}}.\dfrac{1}{2\left(1-2\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{x-\sqrt{x}}{3\sqrt{x}}=\dfrac{\sqrt{x}-1}{3}\) \(b.x=\dfrac{1}{4}\left(KTMĐKXĐ\right)\) nên tại \(x=\dfrac{1}{4}\) giá trị của K không xác định .

\(c.K< 1\)\(\dfrac{\sqrt{x}-1}{3}< 1\)

\(\sqrt{x}-1< 3\text{⇔}x< 16\)

Kết hợp với ĐKXĐ : \(0< x< 16\) ( x # \(\dfrac{1}{4}\) )

\(d.Để:\) K ∈ Z ⇔ \(\sqrt{x}-1\text{∈}\left\{1;-1;3;-3\right\}\)

+) \(\sqrt{x}-1=1\text{⇔ }x=4\left(TM\right)\)

+) \(\sqrt{x}-1=-1\text{⇔ }x=0\left(KTM\right)\)

+) \(\sqrt{x}-1=3\text{⇔ }x=16\left(TM\right)\)

+) \(\sqrt{x}-1=-3\text{⇔ }vô-nghiem\)

KL...............

Câu 2: 

a: ĐKXĐ: x>=0; x<>1

b: \(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\dfrac{2\sqrt{x}}{2}\cdot\left(\sqrt{x}-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: Thay x=4/25 vào G, ta được:

\(G=-\dfrac{2}{5}\cdot\left(\dfrac{2}{5}-1\right)=\dfrac{-2}{5}\cdot\dfrac{-3}{5}=\dfrac{6}{25}\)

 

24 tháng 2 2019

\(Q= \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}\\\)
\(Q = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\ Q = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\ Q = \dfrac{{ - \sqrt x + x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)

1 tháng 8 2018

1 , ĐKXĐ : \(x\ge0,x\ne1\)

Với điều kiện xác định trên phương trình đã cho thánh :

\(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}+\dfrac{x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1-2\left(\sqrt{x}+1\right)+x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

24 tháng 7 2017

a. ĐKXĐ \(x\ge0\)và \(x\ne9\)

Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)

\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)

Vậy với \(0\le x< \frac{9}{4}\)thì K<-1

c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow K\ge-3\)

Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)