loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: S.ABCD là hình chóp tứ giác đều

O là tâm của đáy ABCD

Do đó: SO\(\perp\)(ABCD)

\(\widehat{SA;\left(ABCD\right)}=\widehat{AS;AO}=\widehat{SAO}\)

ABCD là hình vuông

=>\(AC=\sqrt{AB^2+BC^2}=\sqrt{\left(a\sqrt{6}\right)^2+\left(a\sqrt{6}\right)^2}=2a\sqrt{3}\)

O là trung điểm của AC

=>\(AO=\dfrac{AC}{2}=a\sqrt{3}\)

Xét ΔSOA vuông tại O có \(tanSAO=\dfrac{SO}{OA}=\dfrac{2a}{a\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)

nên \(\widehat{SAO}\simeq49^06'\)

=>\(\widehat{SA;\left(ABCD\right)}\simeq49^06'\)

c: Ta có: DA\(\perp\)AB

DA\(\perp\)AC

AB,AC cùng thuộc mp(ABC)

Do đó: DA\(\perp\)(ABC)

\(\widehat{DB;\left(ABC\right)}=\widehat{BD;BA}=\widehat{DBA}\)

Xét ΔDAB vuông tại A có \(tanDBA=\dfrac{DA}{AB}=\dfrac{2a}{2a}=1\)

nên \(\widehat{DBA}=45^0\)

=>\(\widehat{DB;\left(ABC\right)}=45^0\)

d: DA\(\perp\)AB

DA\(\perp\)AC

AB,AC cùng thuộc mp(ABC)

Do đó: DA\(\perp\)(ABC)

\(\widehat{DC;\left(ABC\right)}=\widehat{CD;CA}=\widehat{DCA}\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{\left(a\sqrt{5}\right)^2-\left(a\right)^2}=2a\)

Xét ΔDAC vuông tại A có \(tanDCA=\dfrac{DA}{AC}=\dfrac{1}{2}\)

nên \(\widehat{DCA}\simeq26^034'\)

=>\(\widehat{DC;\left(ABC\right)}\simeq26^034'\)

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).

b)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).

9 tháng 1 2024

11 tháng 4 2024

loading... loading... 

NV
14 tháng 4 2022

Bạn cần bài nào trong mấy bài này nhỉ?

NV
17 tháng 4 2022

1.

\(u_{n+1}=4u_n+3.4^n\)

\(\Leftrightarrow u_{n+1}-\dfrac{3}{4}\left(n+1\right).4^{n+1}=4\left[u_n-\dfrac{3}{4}n.4^n\right]\)

Đặt \(u_n-\dfrac{3}{4}n.4^n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=2-\dfrac{3}{4}.4=-1\\v_{n+1}=4v_n\end{matrix}\right.\)

\(\Rightarrow v_n=-1.4^{n-1}\)

\(\Rightarrow u_n=\dfrac{3}{4}n.4^n-4^{n-1}=\left(3n-1\right)4^{n-1}\)

NV
17 tháng 4 2022

2.

\(a_n=\dfrac{a_{n-1}}{2n.a_{n-1}+1}\Rightarrow\dfrac{1}{a_n}=2n+\dfrac{1}{a_{n-1}}\)

\(\Leftrightarrow\dfrac{1}{a_n}-n^2-n=\dfrac{1}{a_{n-1}}-\left(n-1\right)^2-\left(n-1\right)\)

Đặt \(\dfrac{1}{a_n}-n^2-n=b_n\Rightarrow\left\{{}\begin{matrix}b_1=2-1-1=0\\b_n=b_{n-1}=...=b_1=0\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a_n}=n^2+n\Rightarrow a_n=\dfrac{1}{n^2+n}\)

11 tháng 4 2024

loading... 

11 tháng 4 2024

loading...Too Hân

NV
10 tháng 10 2019

ĐKXĐ: \(-2\le x\le3\)

Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)

Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)

\(\Rightarrow a\le5\)

\(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le a\le5\)

Phương trình trở thành:

\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)

\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)

\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)