Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.
a)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).
b)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).
1.
\(u_{n+1}=4u_n+3.4^n\)
\(\Leftrightarrow u_{n+1}-\dfrac{3}{4}\left(n+1\right).4^{n+1}=4\left[u_n-\dfrac{3}{4}n.4^n\right]\)
Đặt \(u_n-\dfrac{3}{4}n.4^n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=2-\dfrac{3}{4}.4=-1\\v_{n+1}=4v_n\end{matrix}\right.\)
\(\Rightarrow v_n=-1.4^{n-1}\)
\(\Rightarrow u_n=\dfrac{3}{4}n.4^n-4^{n-1}=\left(3n-1\right)4^{n-1}\)
2.
\(a_n=\dfrac{a_{n-1}}{2n.a_{n-1}+1}\Rightarrow\dfrac{1}{a_n}=2n+\dfrac{1}{a_{n-1}}\)
\(\Leftrightarrow\dfrac{1}{a_n}-n^2-n=\dfrac{1}{a_{n-1}}-\left(n-1\right)^2-\left(n-1\right)\)
Đặt \(\dfrac{1}{a_n}-n^2-n=b_n\Rightarrow\left\{{}\begin{matrix}b_1=2-1-1=0\\b_n=b_{n-1}=...=b_1=0\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a_n}=n^2+n\Rightarrow a_n=\dfrac{1}{n^2+n}\)
ĐKXĐ: \(-2\le x\le3\)
Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)
Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)
\(\Rightarrow a\le5\)
Và \(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le a\le5\)
Phương trình trở thành:
\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)
\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)
\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)
\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)
a.
\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp BD\\BD\perp AC\left(\text{hai đường chéo hv}\right)\end{matrix}\right.\)
\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SA\)
Mà \(SA\perp OP\left(gt\right)\)
\(\Rightarrow SA\perp\left(PBD\right)\)
b.
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\Rightarrow OC=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow SO=\sqrt{SC^2-OC^2}=\dfrac{a\sqrt{14}}{2}\)
\(V=\dfrac{1}{3}SO.AB.AD=\dfrac{a^3\sqrt{14}}{6}\)
c.
Chắc đề ghi nhầm, (SCD) là mặt chứ đâu phải đường
Gọi E là trung điểm CD, tam giác SCD cân tại S \(\Rightarrow SE\perp CD\)
Tam giác OCD cân tại O \(\Rightarrow OE\perp CD\)
\(\Rightarrow CD\perp\left(SOE\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)
\(\Rightarrow\widehat{SEO}\) là góc giữa (SCD) và (ABCD)
\(OE=\dfrac{1}{2}AD=\dfrac{a}{2}\) (đường trung bình)
\(tan\widehat{SEO}=\dfrac{SO}{OE}=\sqrt{14}\Rightarrow\widehat{SEO}\approx75^02'\)
d.
\(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)\)
Trong tam giác vuông SEO, từ O kẻ \(OH\perp SE\) (1)
Theo cmt, \(CD\perp\left(SEO\right)\Rightarrow CD\perp OH\) (2)
(1);(2) \(\Rightarrow OH\perp\left(SCD\right)\Rightarrow OH=2\left(O;\left(SCD\right)\right)\)
Hệ thức lượng:
\(OH=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{210}}{30}\)
\(\Rightarrow d\left(A;\left(SCD\right)\right)=2OH=\dfrac{a\sqrt{210}}{15}\)
//Ko hiểu đề cho 2 điểm M và N làm gì, ko liên quan gì đến toàn bộ 4 câu hỏi luôn