<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(y=-5\cdot\dfrac{1-cos2x}{2}+12sin2x+7\)

\(=-\dfrac{5}{2}+\dfrac{5}{2}\cdot cos2x+12\cdot sin2x+7\)

\(=12\cdot sin2x+\dfrac{5}{2}\cdot cos2x+\dfrac{9}{2}\)

\(=\dfrac{\sqrt{601}}{2}\cdot\left(\dfrac{12\cdot sin2x}{\dfrac{\sqrt{601}}{2}}+cos2x\cdot\dfrac{5}{2}\cdot\dfrac{2}{\sqrt{601}}\right)+\dfrac{9}{2}\)

\(=\dfrac{\sqrt{601}}{2}\cdot\left(sin2x\cdot cosa+cos2x\cdot sina\right)+\dfrac{9}{2}\)

\(=\dfrac{\sqrt{601}}{2}\cdot sin\left(2x+a\right)+\dfrac{9}{2}\)

\(-1< =sin\left(2x+a\right)< =1\)

=>\(\dfrac{-\sqrt{601}}{2}< =\dfrac{\sqrt{601}}{2}\cdot sin\left(2x+a\right)< =\dfrac{\sqrt{601}}{2}\)

=>\(\dfrac{-\sqrt{601}+9}{2}< =y< =\dfrac{\sqrt{601}+9}{2}\)

\(y_{min}\) khi sin(2x+a)=-1

=>\(2x+a=-\dfrac{pi}{2}+k2pi\)

=>\(2x=-\dfrac{pi}{2}-a+k2pi\)

=>\(x=-\dfrac{pi}{4}-\dfrac{a}{2}+kpi\)

\(y_{max}\) khi sin(2x+a)=1

=>\(2x+a=\dfrac{pi}{2}+k2pi\)

=>\(x=\dfrac{pi}{4}-\dfrac{a}{2}+kpi\)

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).

b)

Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).

23 tháng 5 2017

a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).

23 tháng 5 2017

b) \(y=2-\sqrt{cosx}\) xác định khi \(0\le cosx\le1\) .
Giá trị lớn nhất của \(y=2-\sqrt{cosx}=2-\sqrt{0}=2\) khi \(cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=2-\sqrt{cosx}=2-\sqrt{1}=1\) khi \(cosx=1\Leftrightarrow x=k2\pi\).

Tham khảo: