Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔDAK=ΔDMC
=>DK=DC và AK=MC
=>BK=BC va ΔDKC cân tại D
=>BD là trung trực của CK
Gọi số quyển vở mà `3` lớp ủng hộ lần lượt là `x,y,z (x,y,z \in \text {N*})`
Vì số vở tỉ lệ với các số `2:3:4`
Nghĩa là: `x/2=y/3=z/4`
Tổng số vở `3` lớp ủng hộ là `360`
`-> x+y+z=360`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=360/9=40`
`-> x/2=y/3=z/4=40`
`-> x=40*2=80, y=40*3=120, z=40*4=160`
Vậy, số vở ủng hộ của `3` lớp lần lượt là `80` quyển, `120` quyển, `160` quyển.
Gọi số cuốn sách lớp 7A,7B,7C ủng hộ được lần lượt là a(quyển),b(quyển),c(quyển)(ĐK: a,b,c thuộc N*)
Theo đề, ta có: 3a=5b=6c và a+b+c=1260
=>\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{10+6+5}=\dfrac{1260}{21}=60\)
=>a=600; b=360; c=300
Gọi số vở 3 lớp 7a,7b,7c lần lượt là a,b,c
Ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{3}\)
b-c=20
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{3}=\frac{b-c}{5-3}=\frac{20}{2}=10\)
Do đó, *)a=4*10=40
*)b=5*10=50
*)c=3*10=30
Vậy số vở 3 lớp 7A;7B;7C lần lượt là 40;50;30(vở)
Vì tỉ lệ của 7B là 5 và của 7C là 3 mà 7B nhiều hơn 7C là 20 quyển.
Nên 2 phần ứng với 20 quyển
Nên 1 phần là 10 quyển
7A=40 quyển
7B=50 quyển
7C=30 quyển
Gọi số thùng sách lớp 7A,7B và 7C ủng hộ lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{36}{9}=4\)
Do đó: a=8; b=12; c=16
Gọi số khẩu trang lớp 7A,7B,7C ủng hộ lần lượt là a(cái),b(cái),c(cái)
(Điều kiện: \(a,b,c\in Z^+\))
Số khẩu trang lớp 7A,7B,7C ủng hộ lần lượt tỉ lệ thuận với 3;5;8 nên \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}\)
Tổng số khẩu trang ba lớp ủng hộ được là 256 cái nên a+b+c=256
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}=\dfrac{a+b+c}{3+5+8}=\dfrac{256}{16}=16\)
=>\(a=16\cdot3=48;b=16\cdot5=80;c=16\cdot8=128\)
vậy: số khẩu trang lớp 7A,7B,7C ủng hộ lần lượt là 48 cái; 80 cái ;128 cái
Gọi x, y, z(khẩu trang) lần lượt là số khẩu trang ba lớp 7A, 7B và 7C ủng hộ được
(\(x,y,z\in N\)*)
Do số khẩu trang ủng hộ được của mỗi lớp lần lượt tỉ lệ với các số 3; 5; 8 nên:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
Do tổng số khẩu trang ủng hộ được của ba lớp là 256 nên: \(x+y+z=256\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{x+y+z}{3+5+8}=\dfrac{256}{16}=16\)
\(\Rightarrow\left\{{}\begin{matrix}x=16\cdot3=48\\y=16\cdot5=80\\z=16\cdot8=128\end{matrix}\right.\)
Vậy...