Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
1b.
Cach 1
Ta co:
\(M=\frac{x^2-2x+2015}{x^2}\)
\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)
Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)
Xet \(M\ne1\)
\(\Leftrightarrow\Delta^`\ge0\)
\(1+\left(M-1\right).2015\ge0\)
\(\Leftrightarrow2015M-2014\ge0\)
\(\Leftrightarrow M\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
Cach 2
\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1
Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)
2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)
Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)
3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)
Tìm GTLN của \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.
Cmr: \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)
ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay
P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)
Từ điều kiện c) ta có :
- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0
- Nếu số k đó là x; z hoặc e :
- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0 => -ax5 = by4 + cz3 + dt2 + e
Dễ thấy by4 + cz3 + dt2 + e > 0 => -ax5 > 0 => .... tìm đc x
Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.
Nhờ Kiệt giúp kìa