K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Ta có :

Tổng ba góc của tam giác ABC bằng 180o nên ∠A + ∠B = 180o - ∠C

Góc ACx là góc ngoài của tam giác ABC nên ∠(ACx) = 180o - ∠C

Do đó : ∠(ACx) = ∠A + ∠B

11 tháng 4 2018

Câu 1.

Ta có : \(\hept{\begin{cases}\sqrt{17}>\sqrt{16}\\\sqrt{26}>\sqrt{25}\end{cases}}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)

Ta lại có : \(\sqrt{99}< \sqrt{100}=10\) (2)

Từ (1) và (2)  \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

12 tháng 4 2018

Thanks

10 tháng 5 2017

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

16 tháng 7 2017

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

3 tháng 1 2017

Hình bạn tự vẽ. 

Đây là lời giải của mình : 

Trước hết biết được góc A thì tính được \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}=80^o\)

\(\widehat{ACx}=\widehat{A}+\widehat{ABC}=100^o+\widehat{ABC}\) ( góc ngoài tam giác )

\(\Rightarrow\frac{\widehat{ACx}}{2}=\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}\)

Do đó \(\widehat{BCN}=\widehat{ACB}+\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}+\widehat{ACB}\)

BI là phân giác góc ABC nên \(\widehat{NBC}=\frac{\widehat{ABC}}{2}\)

Xét \(\Delta BCN:\)

\(\widehat{BNC}=180^o-\left(\widehat{NBC}+\widehat{BCN}\right)=180^o-\left(\frac{\widehat{ABC}}{2}+\frac{\widehat{ABC}}{2}+\widehat{ACB}+50^o\right)\)

\(=180^o-\left(\widehat{ACB}+\widehat{ABC}+50^o\right)=180^o-\left(80^o+50^o\right)=50^o\)

Vậy ...