Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Vì trong một khối đa diện mỗi đỉnh có ít nhất 3 cạnh đi qua và mỗi cạnh nối hai đỉnh nên ta có 2c ≥ 3đ. Suy ra c > đ.
Đáp án là D
“Số cạnh của một hình đa diện luôn lớn hơn số mặt của hình đa diện ấy.”
Đáp án D
“Số cạnh của một hình đa diện luôn lớn hơn hoặc bằng 6”
Đáp án C
“Tồn tại hình đa diện đều mà các mặt của nó là những ngũ giác đều. Đó chính là khối mười hai mặt đều”.
Đáp án C
“Trung điểm các cạnh của hình tứ diện đều là các đỉnh của một hình bát diện đều”.
Vậy \(S=4\pi r^2=4\pi\left(\dfrac{a\sqrt{2}}{2}\right)^2=2\pi a^2\) và \(V=\dfrac{4}{3}\pi r^3=\dfrac{4}{3}\pi\left(\dfrac{a\sqrt{2}}{2}\right)^3=\dfrac{1}{3}\pi a^3\sqrt{2}\)
Chọn D.
Hình tạo bởi hai khối lăng trụ lục giác đều bằng nhau có chung nhau một mặt bên không phải là hình đa diện lồi.
Chọn C.
Dựa vào định nghĩa khối đa diện. Mỗi cạnh là cạnh chung của đúng hai mặt.
Chọn D.
Vì trong một khối đa diện mỗi mặt có ít nhất ba cạnh và mỗi cạnh là cạnh chung của đúng hai mặt bên nên ta có 2c ≥ 3m. Suy ra c > m.