Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(W_{lkr}= \frac{W_{lk}}{A}\)
Năng lượng liên kết riêng của các hạt nhân lần lượt là 1,11 MeV; 0,7075 MeV; 8,7857 MeV; 7,6 MeV.
Hạt nhân kém bền vững nhất là \(_2^4He\).
Năng lượng liên kết riêng của \(_3^6Li\) là \(W_{lkr1}= \frac{(3.m_p+3.m_n-m_{Li})c^2}{6}=5,2009 MeV.\ \ (1)\)
Năng lượng liên kết riêng của \(_{18}^{40}Ar\) là \(W_{lkr2}= \frac{(18.m_p+22.m_n-m_{Ar})c^2}{40}= 8,6234MeV.\ \ (2)\)
Lấy (2) trừ đi (1) => \(\Delta W = 3,422MeV.\)
Của Ar lớn hơn của Li.
Năng lượng liên kết riêng của hạt nhân
\(W_{lkr}= \frac{W_{lk}}{A} = \frac{(Zm_p+(A-Z)m_n-m_{Be})c^2}{A}\)
\( = \frac{0,0679.931}{10}= 6,3215MeV.\)
Các hạt nhân bền vững có năng lượng liên kết riêng lớn nhất cỡ 8,8 MeV/nuclôn ; đó là những hạt nhân có số khối trong khoảng 50 < A < 95.
Kí hiệu \(N_{01}\), \(N_{02}\) là số hạt ban đầu lần lượt của \(^{235}U\) và \(^{238}U\).
t = 0 Ban đầu t thời điểm cần xác định hiện nay t 1 2
Hiện nay \(t_2\): \(\frac{N_{1}}{N_{2}}=\frac{N_{01}2^{-\frac{t_2}{T_1}}}{N_{02}2^{-\frac{t_2}{T_2}}} =\frac{7}{1000}.(1)\)
Thời điểm \(t_1\):
\(\frac{N_1}{N_2}= \frac{N_{01}2^{-\frac{t_1}{T_1}}}{N_{02}2^{-\frac{t_1}{T_2}}} = \frac{3}{100}.(2)\)
Chia (1) cho (2) => \(\frac{2^{-\frac{t_2}{T_1}}.2^{-\frac{t_1}{T_2}}}{2^{-\frac{t_1}{T_1}}.2^{-\frac{t_2}{T_2}}}= \frac{7.100}{3.1000}= \frac{7}{30}.\)
Áp dụng \(\frac{1}{2^{-x}} =2^x. \)
=> \(2^{(t_2-t_1)(\frac{1}{T_2}-\frac{1}{T_1})} = \frac{7}{30}.\)
=> \(t_2-t_1 = \frac{T_1T_2}{T_1-T_2}\ln_2 (7/30)=1,74.10^{9}\).(năm) \(= 1,74 \)(tỉ năm).
Như vậy cách hiện nay 1,74 tỉ năm thì trong urani tự nhiên có tỉ lệ số hạt thỏa mãn như bài cho.
Cứ 1 hạt nhân \(_{92}^{238}U\) bị phân rã tạo ra 1 hạt nhân \(_{82}^{206}Pb\). Từ đó ta có nhận xét là số hạt nhân \(_{92}^{238}U\) bị phân rã chính bằng số hạt nhân \(_{82}^{206}Pb\) tạo thành.
Tỉ số giữa số hạt nhân \(_{92}^{238}U\) bị phân rã và số hạt nhân \(_{92}^{238}U\) còn lại là
\(\frac{\Delta N}{N}= \frac{6,239.10^{18}}{1,188.10^{20}}= 0,0525 = \frac{1-2^{-\frac{t}{T}}}{2^{-\frac{t}{T}}}\)
Nhân chéo => \(2^{-\frac{t}{T}}= 0,95.\)
=> \(t = -T\ln_2 0,95 = 3,3.10^8\)(năm)
=> Tuổi của khối đã là 3,3.108 năm.
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
\(m_t = m_{Na}+ m_H = 22,9837+ 1,0073 = 23,991u.\)
\(m_s = m_{He}+ m_{Ne} = 19,9869+ 4,0015 = 23,9884u.\)
=> \(m_t > m_s\), phản ứng là tỏa năng lượng.
Năng lượng tỏa ra là
\(E = (m_t-m_s)c^2 = 2,6.10^{-3}uc^2 = 2,6.10^{-3}.931,5 = 2,4219 MeV.\)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc
\(m_t = m_{\alpha}+ m_{Al}= 30,97585u.\)
\(m_s = m_P+ m_n = 30,97872u.\)
\(m_t < m_s\), phản ứng là thu năng lượng.
Năng lượng thu vào là
\(E= (m_s-m_t)c^2 = 2,87.10^{-3}uc^2= 2,87.10^{-3}931 MeV/c^2.c^2 = 2,67197MeV \)
Đổi \(1 MeV = 10^6.1,6.10^{-19}J \)
=> \(2,67197 MeV= 4,275152 .10^{-13}J.\)
Tóm lại thu năng lượng \(2,67197 MeV\) hoặc thu \(4,275152 .10^{-13}J.\)
mt=ma+mAL=30,97585u
ms=mp+mn=30,97872u
mt<ms,PHẢN ỨNG LÀ THU NĂNG LƯỢNG
NĂNG LƯỢNG THU VÀO LÀ:
E=(ms-mt)c2=2,87.10-3uc2=2,87.10-3931MeV/c2.c2=2,67197 MeV
Đổi 1 MeV=106.1,6.10-19J
Suy ra:2,67197MeV=4,275152.10-3J
Đáp số:2,67197MeV hoặc 4,275152.10-13J
Chọn A