Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A \rightarrow B+ _2^4He\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{A} =\overrightarrow P_{B} + \overrightarrow P_{\alpha} \)
Mà ban đầu hạt A đứng yên => \(\overrightarrow P_{A} = \overrightarrow 0\)
=> \(\overrightarrow P_{B} + \overrightarrow P_{\alpha} = \overrightarrow 0 .\)
=> \(P_B = P_{\alpha}\)
Mà \(P_{\alpha}^2 = 2m_{\alpha}K_{\alpha};P_B^2 = 2m_BK_B \)
=> \(2m_{\alpha}K_{\alpha}=2m_BK_B \)
=> \(\frac{K_B}{K_{\alpha}}= \frac{m_{\alpha}}{m_B}.\)
\(_{84}^{210}Po \rightarrow _{82}^{208}Pb +_2^4He\)
Do ban đầu hạt nhân mẹ đứng yên nên \(P_{Po} = P_{He}\)
=> \(m_{Po}K_{Po} = m_{He}K_{He}\)
=> \(208.K_{Po} = 4.K_{He}\)
Năng lượng phân rã chính là năng lượng tỏa ra của phản ứng và chính bằng
\(E = (m_t-m_s)c^2 = K_{He}+K_{Po} = \frac{53}{52}K_{He}.\)
phần trăm động năng của He bay ra so với năng lượng phân rã là
\(\frac{K_{He}}{E} = \frac{K_{He}}{\frac{53}{52}He}= \frac{52}{53}= 98,1 \%.\)
\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)
Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)
PPPHeXp
Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)
=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)
=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)
Do hạt nhân mẹ Po ban đầu đứng yên, áp dụng định luật bảo toàn động lượng trước và sau phản ứng ta thu được
\(P_{\alpha} = P_{Pb} \)
=> \(2m_{\alpha} K_{\alpha}=2m_{Pb}K_{Pb} \)
=> \( 4,0026.K_{\alpha}=205,9744.K_{Rn}.(1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần có
\(K_{\alpha}+K_{Pb} = (m_t-m_s)c^2\)
=> \(K_{\alpha}+K_{Rn} = (m_{Po}-m_{\alpha}-m_{Pb})c^2= 0,0058.931,5 = 5,4027 MeV. (2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_{\alpha} = 5,2997 MeV; K_{Pb} = 0,103 MeV. \)
=> \(v_{Pb}= \sqrt{\frac{2K_{Pb}}{m_{Pb}}} =\sqrt{\frac{2.0,103.10^6.1,6.10^{-19}}{205,9744.1,66055.10^{-27}}} = 3,06.10^5m/s.\)
Chú ý đổi đơn vị \(1 MeV = 10^6.1,6.10^{-19}J ; 1 u = 1,66055.10^{-27} kg.\)
\(X \rightarrow Y + \alpha\)
Định luật bảo toàn động năng \(\overrightarrow P_{X} =\overrightarrow P_{Y}+ \overrightarrow P_{\alpha} = \overrightarrow 0. \)
=> \( P_{Y}= P_{\alpha} => m_Y v_Y = m_{\alpha}v_{\alpha}\) hay \(\frac{m_Y}{m_{\alpha}}= \frac{v_{\alpha}}{v_Y}.(1)\)
Lại có \(P^2 = 2mK.\)
=> \(m_YK_Y=m_{\alpha}K_{\alpha}\)
=> \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y}.(2)\)
Từ (1) và (2) => \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y} =\frac{v_{\alpha}}{v_Y} .\)
Þ Động năng của hạt α lớn hơn động năng của hạt nhân con
Đáp án D