K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Đáp án D

Cách giải:

Đặt π t 14 = u ⇒ u ∈ 0 ; 12 π 7 khi đó ta có h = 2 sin 3 u 1 − 4 sin 2 u + 12

Đặt   ⇔ h = 2 3 sin u − 4 sin 3 u 1 − 4 sin 2 u + 12

6 t − 24 t 3 − 8 t 3 + 32 t 5 + 12

32 t 5 − 32 t 3 + 6 t − 12

Xét  u ∈ 0 ; π 2 ⇒ v ∈ 0 ; 1

Dùng [MODE] [7] ta có : trong khoảng  có 1 lần hàm số đạt giá trị bằng 13.

 trong khoảng có 1 lần hàm số đạt giá trị bằng 13.

trong khoảng có 1 lần hàm số đạt giá trị bằng 13.

Vậy   v ∈ 0 ; 1 thì có 3 lần  f v = 13.

Xét u ∈ π 2 ; π ⇒ v ∈ 0 ; 1 . Tương tự như trên ta có 3 lần f v = 13.

 Xét u ∈ π ; 3 π 2 ⇒ v ∈ − 1 ; 0 có 2 lần  f v = 13.

Xét u ∈ 3 π 2 ; 12 π 7 ⇒ v ∈ − 1 ; sin 12 π 7 ⇒ có 1 lần  f v = 13.

Vậy có tất cả 9 lần mực nước trong kênh đạt độ sâu 13m.

14 tháng 5 2017

Đáp án D

  h = 1 2 cos π t 8 + π 4 + 3 ≤ 1 2 + 3 = 7 2

Đẳng thức xảy ra khi   cos π t 8 + π 4 = 1 ⇔ π t 8 + π 4 = k 2 π ⇔ t = 14 k

Do k ∈ ℤ  và 0 h ≤ t ≤ 24 h  nên k = 1 . Vậy 

t = 14 h

26 tháng 1 2017

Đáp án D

h = 3 cos π t 6 + π 3 + 12

Vì  − 1 ≤ cos π t 6 + π 3 ≤ 1 ⇒ 9 ≤ h ≤ 15

max h = 15 ⇔ cos π t 6 + π 3 = 1 ⇔ π t 6 + π 3 = k 2 π ⇔ t = − 2 + 12 k

Thời gian ngắn nhất  ⇒ t = − 2 + 12 = 10 ( h )

27 tháng 2 2016

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 
và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

21 tháng 8 2017

a

29 tháng 10 2017

sai rồi B

4 tháng 2 2016

=>x+1=2006

chỗ nào có 2006 thay vào rút gọn

4 tháng 2 2016

anh làm luôn ra đi

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )Câu 1:(5đ)1. Cho \(a,b,c\) là số thực thỏa mãn:\(ab+bc+ca=2015\). Tính giá trị biểu thức:\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)2. Cho \(a,b,c\) là các số nguyên thỏa mãn:\(a^3+b^3=5c^3\)CMR: \(a+b+c\) chia hết cho \(6\)3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa...
Đọc tiếp

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )

Câu 1:()

1. Cho \(a,b,c\) là số thực thỏa mãn:

\(ab+bc+ca=2015\). Tính giá trị biểu thức:

\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)

2. Cho \(a,b,c\) là các số nguyên thỏa mãn:

\(a^3+b^3=5c^3\)

CMR: \(a+b+c\) chia hết cho \(6\)

3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa mãn:

\(x^2\left(y^2+1\right)+y^2+24=12xy\)

Câu 2:()

a) \(3x+\sqrt{5-x}=2\sqrt{x-3}+11\)

b) \(2x^2+4x-8=\left(2x+3\right)\sqrt{x^2-3}\)

Câu 3:()

Cho các số thực \(x,y\) thỏa mãn điều kiện:

\(x-\sqrt{x+1}=\sqrt{y+5}-y\)

Tìm GTLN của \(P=x+y\)

Câu 4:()

Qua \(M\) cố định ở ngoài đường tròn \(\left(O;R\right)\). Qua \(M\) kẻ các tiếp tuyến \(MA,MB\) ( \(A,B\) là các tiếp tuyến ). Qua \(P\) di động trên cung nhỏ \(AB\) ( \(P\) khác \(A;B\) ) dựng tiếp tuyến của \(\left(O\right)\) cắt \(MA,MB\) lần lượt tại \(E\) và \(F\).

a) CMR: Chu vi tam giác \(MEF\) không đổi khi \(P\) di động trên \(AB\).

b) Lấy \(N\) trên tiếp tuyến \(MA\) sao cho \(N,F\) khác phía \(AB\) và \(AN=BF\)CMR\(AB\) đi qua trung điểm của \(NF\).

c) Kẻ đường thẳng \(d\) qua \(M\) của \(\left(O\right)\) tại \(H\) và \(K\). Xác định vị trí của \(d\) để \(MH+HK\) đạt GTNN

Câu 5:()

1. Cho \(p\)là số nguyên tố thỏa mãn \(p^2+2018\) là số nguyên tố. CMR: \(6p^2+2015\) là số nguyên tố.

2. Cho tập \(x=\left\{1;2;3...;2015\right\}\). Tô màu các phần tử \(x\)bởi \(5\) màu: xanh, đỏ, vàng, tím, nâu. CMR tồn tại \(3\) phần tử \(a,b,c\) của \(x\)sao cho \(a\) là bội của \(b\)\(b\)là bội của \(c\)

 

 

5
29 tháng 11 2015

Lớp 9 hả bạn

Thanh nhiều nha

29 tháng 11 2015

Bạn còn đề nào không? Cho mình với