Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)
TL:
Tìm đạo hàm của hàm số y = ln(x + √(1+ x^2 )).
-HT-
!!!!!
@Nguyen
Để kiểm tra một hàm F(x) có phải là một nguyên hàm của f(x) không thì ta chỉ cần kiểm tra F'(x) có bằng f(x) không?
a) \(F\left(x\right)\) là hằng số nên \(F'\left(x\right)=0\ne f\left(x\right)\)
b) \(G'\left(x\right)=2.\dfrac{1}{2}.\dfrac{1}{\cos^2x}=1+\tan^2x\)
c) \(H'\left(x\right)=\dfrac{\cos x}{1+\sin x}\)
d) \(K'\left(x\right)=-2.\dfrac{-\left(\dfrac{1}{2}.\dfrac{1}{\cos^2\dfrac{x}{2}}\right)}{\left(1+\tan\dfrac{x}{2}\right)^2}=\dfrac{\dfrac{1}{\cos^2\dfrac{x}{2}}}{\left(\dfrac{\cos\dfrac{x}{2}+\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2}\)
\(=\dfrac{1}{\left(\cos\dfrac{x}{2}+\sin\dfrac{x}{2}\right)^2}=\dfrac{1}{1+2\cos\dfrac{x}{2}\sin\dfrac{x}{2}}\)
\(=\dfrac{1}{1+\sin x}\)
Vậy hàm số K(x) là một nguyên hàm của f(x).
Hàm số xác định với mọi \(x\in R\Leftrightarrow\begin{cases}\frac{x^2-mx+1}{x^2-x+1}>\frac{2}{3}\\\frac{x^2-mx+1}{x^2-x+1}\le\frac{2}{3}\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}x^2-\left(3m-2\right)x+1>0\\x^2+\left(2m-3\right)x+1\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\Delta_1=9m^2-12m< 0\\\Delta_2=4m^2-12m+5\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}0< m< \frac{4}{3}\\\frac{1}{2}\le m\le\frac{5}{2}\end{cases}\)
\(\Leftrightarrow\frac{1}{2}\le m< \frac{4}{3}\)
Vậy \(\frac{1}{2}\le m< \frac{4}{3}\) thì hàm số đã cho xác định với mọi \(x\in R\)