Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bắn được 2 viên liên tiếp trúng vào vòng 10 thì thôi không băn nữa.
( mắc j thôi ko bắn nx để khó làm v:?????
Xác suất ghi bàn tương ứng là 0,85; 0,6 và 0,5 đồng nghĩa xác suất đá trượt tương ứng là 0,15; 0,4 và 0,5
a. Có đúng 1 cầu thủ ghi bàn (nghĩa là 2 cầu thủ còn lại đá trượt): (gồm các TH1: (cầu thủ 1 ghi bàn, cầu thủ 2 đá trượt, cầu thủ 3 đá trượt); TH2: cầu thủ 1 đá trượt, cầu thủ 2 ghi bàn, cầu thủ 3 đá trượt; TH3: cầu thủ 1 đá trượt, cầu thủ 2 đá trượt, cầu thủ 3 ghi bàn):
\(P=0,85.0,4.0,5+0,15.0,6.0,5+0,15.0,4.0,5=...\)
b. Ta sẽ sử dụng quy tắc loại trừ (hay còn gọi là phần bù) để làm câu này.
Tổng xác suất của: "có ít nhất 1 người ghi bàn" và "tất cả đều đá trượt" bằng 1
Do đó, ta chỉ cần tìm xác suất của "tất cả đều đá trượt" rồi lấy 1 trừ đi là được.
Xác suất để tất cả đều đá trượt:
\(\overline{P}=0,15.0,4.0,5=...\)
Xác suất cần tìm: \(P=1-\overline{P}=...\)
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2
Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 − 1 3 = 2 3
Gọi biến cố A: Có ít nhất một xạ thủ không bắn trúng bia . Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là 1 2 . 2 3 = 1 3
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là 1 2 . 1 3 = 1 6
* Xác suất cả hai người đều bắn không trúng bia là 1 2 . 2 3 = 1 3