K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

25 tháng 7 2019

Đáp án đúng : D

3 tháng 9 2017

18 tháng 4 2016

10cm A H B O

Giả sử căt hình đó thành 1 mặt phẳng đi qua trục của nón ta được thiết diện như hình vẽ. Trong đó tam giác ABC là tam giác đều và là thiết diện của khối nón. Hình tròn tâm I là thiết diện của quả bóng.

Ta nhận thấy tam giác ABC ngoại tiếp đường tròn tâm I

Hình nón có chiều cao là \(OH=3IH=30\) (cm)

Bán kính đáy nón là \(HA=\frac{30}{\sqrt{3}}=10\sqrt{3}\left(cm\right)\)

Thể tích khối nón là \(V_1=\frac{1}{3}OH.\pi.AH^2=\frac{1}{3}.30\pi.300=3000\pi\left(cm^3\right)\)

Thể tích phần không gian bên trong khối nón không bị quả bóng chiếm chỗ là :

\(V_2=\frac{1}{3}OH.\pi.AH^2-\frac{1}{4}\pi.IH^2=3000\pi-\frac{4000}{3}\pi=\frac{5000}{3}\pi\left(cm^3\right)\)

20 tháng 2 2016

\(V=1.800.000\left(l\right)=1800m^3=S.h\Rightarrow S=\frac{V}{h}=60\left(m^2\right)\)

12 tháng 3 2022

tui ne2

1 tháng 4 2017

a) Do B, C, D, E cách đều A và F nên chúng đồng phẳng (cùng thuộc mặt phẳng trung trực của AF).

Tương tự, A, B, F, D đồng phẳng và A, C, F, E đồng phẳng

Gọi I là giao của (AF) với (BCDE). Khi đó B, I, D là những điểm chung của hai mặt phẳng (BCDE) và (ABFD) nên chúng thẳng hàng. Tương tự, E, I , C thẳng hàng.

Vậy AF, BD, CE đồng quy tại I.

Vì BCDE là hình thoi nên BD vuông góc với BC và cắt BC tại I là trung điểm của mỗi đường. I là trung điểm của AF và AF vuông góc với BD và EC, do đó các đoạn thẳng AF, BD, và CE đôi một vuông góc với nhau cắt nhau tại trung điểm của chúng.

b) Do AI vuông góc (BCDE) và AB = AC =AD = AE nên IB = IC= ID = IE. Từ đó suy ra hình thoi BCDE là hình vuông. Tương tự, ABFD, AEFC là những hình vuông

26 tháng 2 2017

hay lắm bạn

25 tháng 12 2017

\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)

=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)

=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)

=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)

=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)